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1 HMMs: Warmup

1. What are the three components of a hidden markov model? What makes it "hidden”?

e Initial distribution: P(Xj)
e Transition model: P(X;|X;_1)
e Sensor model: P(FE:|X;)
The hidden part of hidden markov models comes from the fact that we do not observe the state

variables X; directly, rather we observe the evidence variables F; and must make conclusions about the
underlying true state.

2. Write an expression for the joint distribution of a hidden markov model consisting of states X, ..., X,
and evidence variables Fq,...,Ey. How does the expression reflect the underlying structure of the
model?

P(Xo,...,XNn,E1,...,Exn) = P(X)) Hi\il P(X|X—1)P(E:| Xy)

This expression reflects that the a state is only directly influenced by its previous state, and that
the evidence is independent of everything else given the corresponding state.

3. For each of the following descriptions in English of an inference task, write the corresponding probability
expression:

e Draw conclusions about our current underlying state given evidence up to the current time step
e Draw conclusions about our future underlying state given evidence up to the current time step
e Draw conclusions about a past underlying state given evidence up to the current time step

e Draw conclusions about the sequence of underlying states given evidence up to the current time
step

e Draw conclusions about the most likely sequence of underlying states given evidence up to the
current time step

Filtering: P(X:|E1.+)

Prediction: P(X¢ix|E1:4),k >0

Smoothing: P(X;|E1.4),1 <k <t

Explanation: P(X1.t|FE1.t)

Most likely explanation: argmaxy,  P(X1.¢|E1.¢)
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4. Hidden Markov Models can be extended in a number of ways to incorporate additional relations. Since
the independence assumptions are different in these extended Hidden Markov Models, the forward
algorithm updates will also be different. What is the forward algorithm updates for the extended
Hidden Markov Models specified by the following Bayes net?

R

P(Xilert) = a2, | Pled|we, xi—1)P(xi|we—1) P(xi-1le14-1)
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2 HMMs: Tracking a Jabberwock

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large
tugley wood which is conveniently divided into an N x N grid. It wanders freely around the N2 possible
cells. At each time step t = 1,2,3,..., the Jabberwock is in some cell X; € {1,...,N}?, and it moves to
cell X;y1 randomly as follows: with probability 1 — €, it chooses one of the (up to 4) valid neighboring cells
uniformly at random; with probability €, it uses its magical powers to teleport to a random cell uniformly
at random among the N? possibilities (it might teleport to the same cell). Suppose € = %, N =10 and that
the Jabberwock always starts in X; = (1, 1).

(a) Compute the probability that the Jabberwock will be in Xy = (2,1) at time step 2. What about
P(Xs = (4,4))?

(Xo=(2,1)) =1/2-1/241/2-1/100 = 0.255
(Xa = (4,4)) = 1/2 - 1/100 = 0.005

el

At each time step t, you don’t see X; but see E;, which is the row that the Jabberwock is in; that is,
if Xy = (r,¢), then F; = r. You still know that X; = (1,1).

(b) Suppose we see that Fy = 1, E5 = 2. Fill in the following table with the distribution over X after each
time step, taking into consideration the evidence. Your answer should be concise. Hint: you should
not need to do any heavy calculations.

t P(Xt | elzt_l,Xl = (171)) P(Xt | 61:t7X1 = (1,1))
X1 P(X,) X1 P(X,)
1 (1, 1) (1, 1)
all other values all other values
X2 P(X2 | €1, X1 = (1, 1)) X2 P(X2 | €71:2, X1 = (1, 1))
, 1, 2) 2 1)
(2, 1) (2,a) (Va,a > 1)
all other values all other values
t P(Xt | 61;,5_1,X1 = (17 1)) P(Xt | elzt,Xl = (1,1))
X1 P(X,) X1 P(X,)
1 (1, 1) 1 (1, 1) 1
all other values 0 all other values 0
Xz P(Xz | e, Xl = (1, 1)) X2 P(X2 I 61:27X1 = (131))
9 (1,2) 51/200 (2, 1) 51/60
(2, 1) 51/200 (2,a) (Va,a>1) 1/60
all other values 1/200 all other values 0
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You are a bit unsatisfied that you can’t pinpoint the Jabberwock exactly. But then you remembered
Lewis told you that the Jabberwock teleports only because it is frumious on that time step, and it
becomes frumious independently of anything else. Let us introduce a variable F; € {0,1} to denote
whether it will teleport at time ¢. We want to to add these frumious variables to the HMM. Consider

the two candidates:

- _ (A) (B)
m) (B (B R (B (B X1 AL X5]Xa | Xp AL X3|Xs
) | ! ]J ‘f X; AL Es| X | Xy AL Es|Xo
X (X)X (X0 Xo (X)) - X, 1L BX, | Xy 1L BlX,
\I‘/ S :L/ \l’/ \L’/ N X] s E4|X2 X1 gin E4|X2
N A PN /l\ X1 AL F4‘X2 X1 AL F4|X2
B (B (B & (B (B Es 1L F3|X3 | By UL F3| X5
(A) (B) Ey AL Fo[Xs | By AL F[X>
Ey, Il Fh|Ey | By UL Fy|E,

For each model, circle the conditional independence assumptions above which are true in that model.

(A) (B)

X; AL X5|Xov | Xy AL X3| X0
Xy AL Bo|Xov | Xy AL Ey|Xav
X, U BlXy | Xy 1L Bl Xov
Xy AL By Xov | X1 AL By Xov
Xy AL Fy|Xov | X1 AL Fy|Xov
Es Il F3|Xsv | Es 1L F3|Xsv
Bl B|Xy | By L B|Xov
B UL B|E, | By 1l BB,

Which Bayes net is more appropriate for the problem domain here, (A) or (B)? Justify your answer.

(A) because the choice of X depends on F in the problem description.

For the following questions, your answers should be fully general for models of the structure shown
above, not specific to the teleporting Jabberwock.

For (A), express P(X¢41, €1:441, f1:t+1) in terms of P(Xy, e1.¢, f1.¢) and the conditional probability tables
used to define the network. Assume the E and F nodes are all observed.

P(i41,€1:041, f1e+1) = Pler1|ig1) P(fit1) Z P(zit1|xe, fier) Pz, €14, f1:4).

We're already provided with P(x¢,eq., f1.4). To get P(ay + 1,e1.4, f1.4), we can sum over all z; and
multiply by P(xi41 | ¢, fi+1), the conditional probability table of x;11.
Then, to get the joint probability P(x; + 1,e1.441, f1.4+1), we multiply the above quantity with the
emission probability (P(ei+1 | #¢41)) and P(fi+1), the CPT of P(fi41).

For (B), express P(X¢41,€1:441, f1:t41) in terms of P(X4, eq.4, f1.4) and the CPTs used to define the
network. Assume the F and F nodes are all observed.
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P(-Tt+1>€1:t+1af1:t+1) = P(et+1|$t+1)P(ft+l|xt+l)Zp(xt+1|xt)P(xt>el:tafl:t)-

Tt

Similar idea as above, except this time we multiply the joint probability by P(x¢41|z:), since x;1 now
no longer depends on fi11).

Suppose that we don’t actually observe the Fis.

For (A), express P(X¢41,€1.441) in terms of P(Xy, 1) and the CPTs used to define the network.

P(w1,en01) = Plecn|een) D P(fen1) Y P@esi|ze, fren) Plar, er).

fe+1 Tt

For (B), express P(X;t1,€1.441) in terms of P(Xy,e1.;) and the CPTs used to define the network.

P(ziq1,€1:041) = P(6t+1\l’t+1)ZP(It+1|$t)P(It761:t)-

Tt

For (g) and (h), we essentially use the same logic as (e) and (f). However, we no longer need the F;s
in the joint probability - so for any probability values that are conditioned on an f;, we multiply by
P(f:) and sum over all possible f; values. If not (i.e., for graph (B)), we simply drop that term when
computing the joint probability.
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3 Particle Filtering: Warmup

(a) The following state space contains 10 particles. The left grid shows the prior belief distribution of the
particles at time ¢, while the grid on the right shows the states weighted by the observations P(e¢|S;).

P PY ° o State | Weight

3 ) 9| @[3 | | @[3 01
N 22) | 04

2 o o |2 o 0.. (2,3) | 0.2
3.1) | 04

1 o |1 e || 32 009
R IR 33) | 04

Fill in the following grids to update the belief distribution. Each square in the “Belief” grid should
correspond to P(St|elzt,1), the estimated probability of a particle being in state S at time ¢. Each square
in the “Unnormalized” grid should correspond to the probability P(S;,ete1.t—1). The “Normalized”
grid should contain our updated belief distribution P(St\et, €1:4—1)-

3| /0| /0| /10| 3 3
2| /io| /10| /10| 2 2
1| /10| /10| /10| 1 1
1 2 3 1 2 3 1 2 3
Belief Unnormalized Normalized

Solution: Note that states which did not appear in the weight table have a weight of 0.

3|1/10| 2/10| 2/10| 3| 1/200| 4/100 | 8/200| 3| 1/48| 4/48| 8/48

2| 0/10| 1/10] 3/10 210 4/100 | 27/100 2|0 4/48| 27/48

1|0/10| 0/10| 1/10 110 0 4/1001 110 0 4/48
1 2 3 1 2 3 1 2 3

Belief Unnormalized Normalized
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(b)

True / False: The particle filtering algorithm is consistent since it gives correct probabilities as the
number of samples NV tends to infinity.

True

True / False: The number of samples we use in the particle filtering algorithm increases from one time
step to the next.

False. The number of samples stays constant from one time step to the next. The last step for each
iteration of the algorithm is resampling, which builds a new population of N samples from the belief
distribution updated by observation weights.
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