
Warm-up as you walk in
What is the solution to this LP?

https://www.desmos.com/calculator/tnlo7p5plp

https://www.desmos.com/calculator/tnlo7p5plp

Plan
Last Time

▪ Linear programming formulation

▪ Problem description

▪ Graphical representation

▪ Optimization representation

Today

▪ Solving linear programs

▪ Higher dimensions than just 2

▪ Integer programs

AI: Representation and Problem Solving

Integer Programming

Instructor: Pat Virtue

Slide credits: CMU AI with drawings from http://ai.berkeley.edu

Reminder: Cost Contours
Given the cost vector 𝑐1, 𝑐2

⊤ where will

𝐜⊤𝐱 = 0 ?

𝐜⊤𝐱 = 1 ?

𝐜⊤𝐱 = 2 ?

𝐜⊤𝐱 = -1 ?

𝐜⊤𝐱 = -2 ?

https://www.desmos.com/calculator/8d9kxbdq9u

https://www.desmos.com/calculator/8d9kxbdq9u

Solving a Linear Program
What is the solution to this LP?

https://www.desmos.com/calculator/tnlo7p5plp

https://www.desmos.com/calculator/tnlo7p5plp

Solving a Linear Program

min
𝐱

. 𝐜⊤𝐱

Inequality form, with no constraints

Solving a Linear Program

min
𝐱

. 𝐜⊤𝐱

 s.t. 𝑎1𝑥1 + 𝑎2𝑥2 ≤ 𝑏

Inequality form, with one constraint

Poll 1

min
𝐱

. 𝐜⊤𝐱

 s.t. 𝑎1𝑥1 + 𝑎2𝑥2 ≤ 𝑏

True or False: A minimizing LP with exactly on constraint, will always
have a minimum objective at −∞.

Solving an LP
Solutions are at feasible intersections

of constraint boundaries!!

Algorithms

▪ Check objective at all feasible
intersections

In more detail:

1. Enumerate all intersections

2. Keep only those that are feasible
(satisfy all inequalities)

3. Return feasible intersection with
the lowest objective value

Solving an LP
But, how do we find the intersection between boundaries?

min
𝐱

 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛
𝐴 =

−100 −50
100

3
−20

50
4

−70

𝒃 =

−2000
2500
100

−700

Calorie min
Calorie max
Sugar
Calcium

Solving an LP
Solutions are at feasible intersections

of constraint boundaries!!

Algorithms

▪ Check objective at all feasible
intersections

▪ Simplex

Solving an LP
Simplex algorithm

▪ Start at a feasible intersection (if
not trivial, can solve another LP to
find one)

▪ Define successors as “neighbors”
of current intersection

▪ i.e., remove one row from our square
subset of A, and add another row not
in the subset; then check feasibility

▪ Move to any successor with lower
objective than current intersection

▪ If no such successors, we are done

Greedy local hill-climbing search! … but always finds optimal solution

Solving an LP
Solutions are at feasible intersections

of constraint boundaries!!

Algorithms

▪ Check objective at all feasible
intersections

▪ Simplex

▪ Interior Point

Figure 11.2 from Boyd and Vandenberghe, Convex Optimization

What about higher dimensions?

min
𝐱

 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛

Problem
Description

Graphical Representation

Optimization
Representation

“Marty, you’re not thinking fourth-dimensionally”

https://www.youtube.com/watch?v=CUcNM7OsdsY

https://www.youtube.com/watch?v=CUcNM7OsdsY

Shapes in higher dimensions
How do these linear shapes extend to 3-D, N-D?

𝑎1 𝑥1 + 𝑎2 𝑥2 ≤ 𝑏1

𝑎1,1 𝑥1 + 𝑎1,2 𝑥2 ≤ 𝑏1

 𝑎2,1 𝑥1 + 𝑎2,2 𝑥2 ≤ 𝑏2

 𝑎3,1 𝑥1 + 𝑎3,2 𝑥2 ≤ 𝑏3

 𝑎4,1 𝑥1 + 𝑎4,2 𝑥2 ≤ 𝑏4

𝑎1 𝑥1 + 𝑎2 𝑥2 = 𝑏1

What are intersections in higher dimensions?
How do these linear shapes extend to 3-D, N-D?

𝐴 =

−100 −50
100

3
−20

50
4

−70
 𝐛 =

−2000
2500
100

−700

Calorie min
Calorie max
Sugar
Calcium

min
𝐱

 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛

How do we find intersections in higher dimensions?

𝐴 =

−100 −50
100

3
−20

50
4

−70
 𝐛 =

−2000
2500
100

−700

Calorie min
Calorie max
Sugar
Calcium

Still looking at subsets of 𝐴 matrix

min
𝐱

 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛

Linear Programming
We are trying healthy by finding the optimal amount of food to purchase.

We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

▪ 2000 ≤ Calories ≤ 2500

▪ Sugar ≤ 100 g

▪ Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per oz) 1 100 3 20

Boba (per fl oz) 0.5 50 4 70

What is the cheapest way to stay “healthy” with this menu?

How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Linear Programming → Integer Programming
We are trying healthy by finding the optimal amount of food to purchase.

We can choose the amount of stir-fry (bowls) and boba (glasses).

Healthy Squad Goals

▪ 2000 ≤ Calories ≤ 2500

▪ Sugar ≤ 100 g

▪ Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per bowl) 1 100 3 20

Boba (per glass) 0.5 50 4 70

What is the cheapest way to stay “healthy” with this menu?

How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Linear Programming vs Integer Programming
Linear objective with linear constraints, but now with additional

constraint that all values in 𝒙 must be integers

min
𝐱

. 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛

We could also do:

▪ Even more constrained: Binary Integer Programming

▪ A hybrid: Mixed Integer Linear Programming

min
𝐱

. 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛
 𝐱 ∈ ℤ𝑁

Notation Alert!

Integer Programming: Graphical Representation
Just add a grid of integer points onto our LP representation

min
𝐱

. 𝐜𝑇𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛
 𝐱 ∈ ℤ𝑁

min
𝐱

. 𝐜𝑇𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛
 𝐱 ∈ ℤ𝑁

Relaxation
Relax IP to LP by dropping integer constraints

Remember heuristics?

Poll 2:
Let 𝑦𝐼𝑃

∗ be the optimal objective of an integer program 𝑃.

Let 𝐱𝐼𝑃
∗ be an optimal point of an integer program 𝑃.

Let 𝑦𝐿𝑃
∗ be the optimal objective of the LP-relaxed version of 𝑃.

Let 𝐱𝐿𝑃
∗ be an optimal point of the LP-relaxed version of 𝑃.

Assume that 𝑃 is a minimization problem.

Which of the following are true?

A) 𝐱𝐼𝑃
∗ = 𝐱LP

∗

B) 𝑦𝐼𝑃
∗ ≤ 𝑦𝐿𝑃

∗

C) 𝑦𝐼𝑃
∗ ≥ 𝑦𝐿𝑃

∗

𝑦𝐼𝑃
∗ = min

𝐱
. 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛
 𝐱 ∈ ℤ𝑁

𝑦𝐿𝑃
∗ = min

𝐱
. 𝐜⊤𝐱

 s.t. 𝐴𝐱 ⪯ 𝐛

Poll 3:
True/False: It is sufficient to consider the integer points around the
corresponding LP solution?

Solving an IP
Branch and Bound algorithm

1. Push LP solution of problem into priority queue,

 ordered by objective value of LP solution

2. Repeat:

▪ If queue is empty, return IP is infeasible

▪ Pop candidate solution 𝐱𝐿𝑃
⋆ from priority queue ()

▪ If 𝐱𝐿𝑃
⋆ is all integer valued, we are done; return solution

▪ Otherwise, select a coordinate 𝑥𝑖 that is not integer valued, and
add two additional LPs to the priority queue:

 Left branch: Added constraint 𝑥𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥𝑖

 Right branch: Added constraint 𝑥𝑖 ≥ 𝑐𝑒𝑖𝑙 𝑥𝑖

Note: Only add LPs to the queue if they are feasible

Branch and Bound Example

𝐱⋆ = 17.5,5
𝑦⋆ = 20.5

Priority Queue:
1. 𝐱⋆ = 17.5,5 , 𝑦⋆ = 20.5

𝑥1 ≤ 17 𝑥1 ≥ 18

𝒄 = 1, 0.6 𝑇

Branch and Bound Example

10 15 20 25

5

10

15

Branch and Bound Example

10 15 20 25

5

10

15

10 15 20 25

5

10

15

10 15 20 25

5

10

15

𝑥1 ≤ 17 𝑥1 ≥ 18

Branch and Bound Example

𝒄 = 1, 0.6 𝑇

𝐱⋆ = 17.5,5
𝑦⋆ = 20.5

𝐱⋆ = 17,6
𝑦⋆ = 20.6

𝐱⋆ = 18,4.85
𝑦⋆ = 20.91

𝑥1 ≤ 17 𝑥1 ≥ 18

Priority Queue:
1. 𝐱⋆ = 17,6 , 𝑦⋆ = 20.6
2. 𝐱⋆ = 18,4.85 , 𝑦⋆ = 20.91

	Slide 1: Warm-up as you walk in
	Slide 2: Plan
	Slide 3: AI: Representation and Problem Solving
	Slide 4: Reminder: Cost Contours
	Slide 5: Solving a Linear Program
	Slide 6: Solving a Linear Program
	Slide 7: Solving a Linear Program
	Slide 8: Poll 1
	Slide 9: Solving an LP
	Slide 10: Solving an LP
	Slide 11: Solving an LP
	Slide 12: Solving an LP
	Slide 13: Solving an LP
	Slide 14: What about higher dimensions?
	Slide 15: “Marty, you’re not thinking fourth-dimensionally”
	Slide 16: Shapes in higher dimensions
	Slide 17: What are intersections in higher dimensions?
	Slide 18: How do we find intersections in higher dimensions?
	Slide 19: Linear Programming
	Slide 20: Linear Programming  Integer Programming
	Slide 21: Linear Programming vs Integer Programming
	Slide 22: Integer Programming: Graphical Representation
	Slide 23: Relaxation
	Slide 24: Poll 2:
	Slide 25: Poll 3:
	Slide 26: Solving an IP
	Slide 27: Branch and Bound Example
	Slide 28: Branch and Bound Example
	Slide 29: Branch and Bound Example
	Slide 30: Branch and Bound Example

