Warm-up: What to eat?

We are trying healthy by finding the optimal amount of food to purchase. We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium \geq 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu? How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Questions about schedule update?

9/5 Thu	Informed Search	AIMA Ch. 3.5-6	pptx (inked) pdf (inked)
9/10 Tue	Adversarial Search	AIMA Ch. 5.1-2, 5.5	pptx (inked) pdf (inked)
9/12 Thu	Contraint Satisfaction Problems	AIMA Ch. 6.1-3, 6.5 CSP Demo	pptx (inked) pdf (inked) Video: Forward Checking Video: AC-3 Video: Ordering: MRV and LCV
9/17 Tue	Optimization & Linear Programming	Boyd and Vandenberghe Ch. 2.2.1, 2.2.4, 4.3-4.3.1 Desmos Demos: Prereq: Dot Product LP: Cost at points LP: Zero cost LP: Cost contours LP: Constraint LP: Cost with one constraint LP	
9/19 Thu	Solving LPs & Integer Programming		
9/24 Tue	Tentative: Local Search & Ethics	AIMA Ch. 4.1, 6.4	
9/26 Thu	Logical Agents	AIMA Ch. 7.1-7	
10/1 Tue	MIDTERM 1 EXAM	In class	

AI: Representation and Problem Solving

Slide credits: CMU AI with drawings from http://ai.berkeley.edu

Warm-up: What to eat?

We are trying healthy by finding the optimal amount of food to purchase.

We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

 $2000 \le \text{Calories} \le 2500$

Sugar ≤ 100 g

Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What is the cheapest way to stay "healthy" with this menu?

How much stir-fry (ounce) and boba (fluid ounces) should we buy?

Optimization

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Constraint Satisfaction Problems

Map coloring vectors

 \rightarrow Any x

s.t. **x** satisfies constraints

"such that"

$$\vec{X} = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

$$\left[x_{1}, x_{2} \right]$$

Notation Alert!

Diet Problem

Any **x**

s.t. **x** satisfies constraints

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

 $\min_{\mathbf{x}} cost(\mathbf{x})$

Objective function

s.t. **x** satisfies constraints

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Notation Alert!

Diet Problem

 $\min_{\mathbf{x}} cost(\mathbf{x})$

s.t. $calories(\mathbf{x}) \underline{contained} \in sugar(\mathbf{x}) \leq limit 2$ $calcium(\mathbf{x}) \geq limit 3$

Healthy Squad Goals

 $2000 \le \text{Calories} \le 2500$

Sugar ≤ 100 g

Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

Diet Problem

$$C_1 \times_1 + C_2 \times_2$$

s.t.
$$100 x_1 + 50 x_2 \ge 2000$$

$$100 x_1 + 50 x_2 \le 2500$$

$$3 x_1 + 4 x_2 \le 100$$

$$20 x_1 + 70 x_2 \ge 700$$

$$q_1 X_1 + q_2 X_2 \stackrel{>}{=} 2$$

Healthy Squad Goals

- $2000 \le \text{Calories} \le 2500$
- Sugar ≤ 100 g
- Calcium ≥ 700 mg

Food	Cost	Calories	Sugar	Calcium 7
Stir-fry (per oz)	٥ 1	100	3	20 🐧
Boba (per fl oz)	C 2 0.5	50	4	70 9

Notation Alert!

Diet Problem

$$\min_{x_1, x_2} c_1 x_1 + c_2 x_2 \longrightarrow C^{\top} X$$

s.t.
$$a_{1,1} x_1 + a_{1,2} x_2 \ge b_1$$

 $a_{2,1} x_1 + a_{2,2} x_2 \le b_2$
 $a_{3,1} x_1 + a_{3,2} x_2 \le b_3$
 $a_{4,1} x_1 + a_{4,2} x_2 \ge b_4$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ U_{21} \\ a_{41} & a_{42} \end{bmatrix}$$
Notation Alert! 42

Limit

[2000]

$$\mathbf{b} = \begin{bmatrix} 2500 \\ 100 \\ 700 \end{bmatrix}$$

Calorie min
Calorie max
Sugar
Calcium

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\top}\mathbf{x}$$
s.t.
$$a_{1,1} x_1 + a_{1,2} x_2 \ge b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$a_{4,1} x_1 + a_{4,2} x_2 \ge b_4$$

Cost

Limit

$$\mathbf{b} = egin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

Calorie min 2500 | Calorie max Sugar Calcium

Notation Alert!

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
s.t. $-a_{1,1} x_1 - a_{1,2} x_2 \le -b_1$

$$a_{2,1} x_1 + a_{2,2} x_2 \le b_2$$

$$a_{3,1} x_1 + a_{3,2} x_2 \le b_3$$

$$-a_{4,1} x_1 - a_{4,2} x_2 \le -b_4$$

$$\mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} 2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

50

Calorie min 2500 Calorie max Sugar Calcium

Diet Problem

min
$$\mathbf{x}$$
 $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ s.t. $a_{1,1} x_1 + a_{1,2} x_2 \le b_1$ $a_{2,1} x_1 + a_{2,2} x_2 \le b_2$ $a_{3,1} x_1 + a_{3,2} x_2 \le b_3$ $a_{4,1} x_1 + a_{4,2} x_2 \le b_4$

Cost

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix} \begin{array}{c} \text{Calorie min} \\ \text{Calorie max} \\ \text{Sugar} \\ \text{Calcium} \end{array}$$

Diet Problem

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

$$\begin{bmatrix} 4 \times 2 \end{bmatrix} \begin{bmatrix} 2 \times 1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \times 1 \end{bmatrix}$$

Notation Alert!

$$\mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ 700 \end{bmatrix}$$

-2000] Calorie min 2500 | Calorie max 100 | Sugar -700 | Calcium

What has to increase to add more nutrition constraints?

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Select all that apply

- A) length x
- B) length c
- \rightarrow C) height A 75 863
 - D) width A
 - \rightarrow E) length **b** 75 86

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What has to increase to add more nutrition constraints?

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t. $A\mathbf{x} \leq \mathbf{b}$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$

$$A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix}$$

$$951 \quad 952$$

$$\mathbf{b} = \begin{bmatrix} -2000 \\ 2500 \\ 100 \\ -700 \end{bmatrix}$$

What has to increase to add more menu items?

 $\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Select all that apply

- A) length **x**
- B) length \mathbf{c} $A \times$
- C) height A
- D) width A
- E) length **b**

Food	Cost	Calories	Sugar	Calcium
Stir-fry (per oz)	1	100	3	20
Boba (per fl oz)	0.5	50	4	70

What has to increase to add more nutrition constraints?

 $\mathbf{c}^{\mathsf{T}}\mathbf{x}$ min X

 $A\mathbf{x} \leq \mathbf{b}$ s.t.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \\ \times_3 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 1 \\ 0.5 \\ \\ \\ \times_3 \end{bmatrix} \qquad A = \begin{bmatrix} -100 & -50 \\ 100 & 50 \\ 3 & 4 \\ -20 & -70 \end{bmatrix} \begin{array}{c} \alpha_{13} \\ \alpha_{27} \\ \alpha_{33} \\ -20 & -70 \end{bmatrix}$$

Question

If $A \in \mathbb{R}^{M \times N}$, which of the following also equals N?

 $\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Select all that apply

- \sqrt{A}) length \mathbf{x}
- \sqrt{B}) length \mathbf{c}
 - C) length **b**

Notation Alert!

Linear Programming

Linear objective with linear constraints

As opposed to general optimization

min.
$$f_0(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0$, $i = 1 \dots M$
 $\mathbf{a}_i^{\mathsf{T}} \mathbf{x} = \mathbf{b}_i$, $i = 1 \dots P$

Linear Programming

Different formulations

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x}$$

s.t.
$$A\mathbf{x} \leq \mathbf{b}$$

General form

min.
$$\mathbf{c}^{\mathsf{T}}\mathbf{x} + \mathbf{d}$$

s.t. $G\mathbf{x} \leq \mathbf{h}$
 $A\mathbf{x} = \mathbf{b}$

Standard form

$$\begin{array}{ll}
\min_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\
\text{s.t.} & \mathbf{A} \mathbf{x} = \mathbf{b} \\
\mathbf{x} \geq 0
\end{array}$$

Important to pay attention to form!

Can switch between formulations!

Optimization

Problem Description

Optimization Representation

 $\min_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}}\mathbf{x}$

s.t. $A\mathbf{x} \leq \mathbf{b}$

Which of these points have cost $\mathbf{c}^{\mathsf{T}}\mathbf{x} = 0$?

for cost vector:
$$\mathbf{c} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

Cost Contours

Given the cost vector $[c_1, c_2]^T$ where will

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 0$$
 ?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 1$$
?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 2$$
?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = -1$$
?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = -2$$
 ?

Question

As the magnitude of ${f c}$ increases, the distance between

the contours lines of the objective $\mathbf{c}^{\mathsf{T}}\mathbf{x}$:

- A) Increases
- B) Decreases

https://www.desmos.com/calculator/8d9kxbdq9u

Geometry / Algebra I Quiz

What shape does this inequality represent?

$$a_1 x_1 + a_2 x_2 \le b_1$$
 \ge

$$\vec{\alpha} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

Geometry / Algebra I Quiz What shape do these represent?

1.
$$a_1 x_1 + a_2 x_2 = b_1$$

$$2. \quad a_1 x_1 + a_2 x_2 \le b_1$$

3.
$$a_{1,1} x_1 + a_{1,2} x_2 \le b_1$$

 $a_{2,1} x_1 + a_{2,2} x_2 \le b_2$
 $a_{3,1} x_1 + a_{3,2} x_2 \le b_3$
 $a_{4,1} x_1 + a_{4,2} x_2 \le b_4$

Feasible region:

All points x that satisfy the constraints

Geometry / Algebra I Quiz

What shape do these represent?

1.
$$a_1 x_1 + a_2 x_2 = b_1$$

$$2. \quad a_1 x_1 + a_2 x_2 \le b_1$$

3. $a_{1,1} x_1 + a_{1,2} x_2 \le b_1$ $a_{2,1} x_1 + a_{2,2} x_2 \le b_2$ $a_{3,1} x_1 + a_{3,2} x_2 \le b_3$ $a_{4,1} x_1 + a_{4,2} x_2 \le b_4$

Geometry / Algebra I Quiz What shape do these represent?

1.
$$a_1 x_1 + a_2 x_2 = b_1$$

$$2. \quad a_1 x_1 + a_2 x_2 \le b_1$$

3.

https://www.desmos.com/calculator/lp0rqsb1w6

Geometry / Algebra I Quiz What shape do these represent?

1.
$$a_1 x_1 + a_2 x_2 = b_1$$

$$2. \quad a_1 x_1 + a_2 x_2 \le b_1$$

3.
$$a_{1,1} x_1 + a_{1,2} x_2 \le b_1$$

 $a_{2,1} x_1 + a_{2,2} x_2 \le b_2$
 $a_{3,1} x_1 + a_{3,2} x_2 \le b_3$
 $a_{4,1} x_1 + a_{4,2} x_2 \le b_4$

https://www.desmos.com/calculator/plp1thgsbh