# AI: Representation and Problem Solving

# Bayes Nets: Independence



Instructor: Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

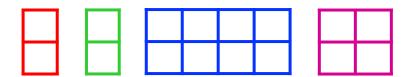
# Bayesian Networks

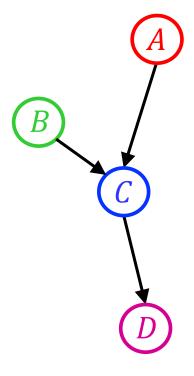
Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | *Parents*(node) )





$$P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_{i} P(X_i | Parents(X_i))$$

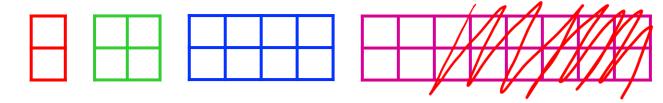
# Bayesian Networks

Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node) )





Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

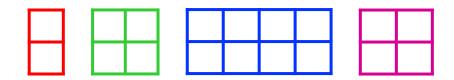
# Bayesian Networks

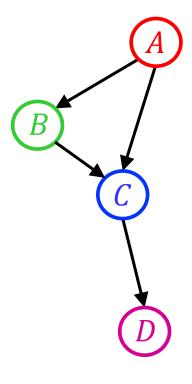
Bayes net

One node per random variable

Directed-Acyclic-Graph

One CPT per node: P(node | Parents(node) )





$$P(A,B,C,D) = P(A) P(B|A) P(C|A,B) P(D|C)$$

Encode joint distributions as product of conditional distributions on each variable

$$P(X_1, ..., X_N) = \prod_i P(X_i | Parents(X_i))$$

# Bayes' Nets: Big Picture

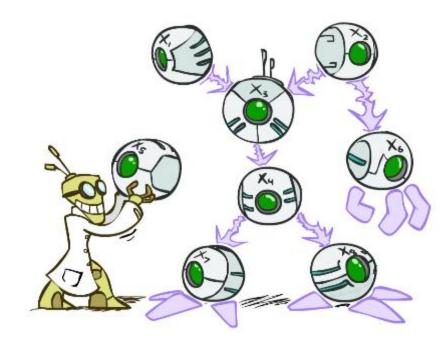
Two problems with using full joint distribution tables as our probabilistic models:

- Usually, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time

Bayes nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)

- A type of probabilistic graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions





# **Graphical Model Notation**

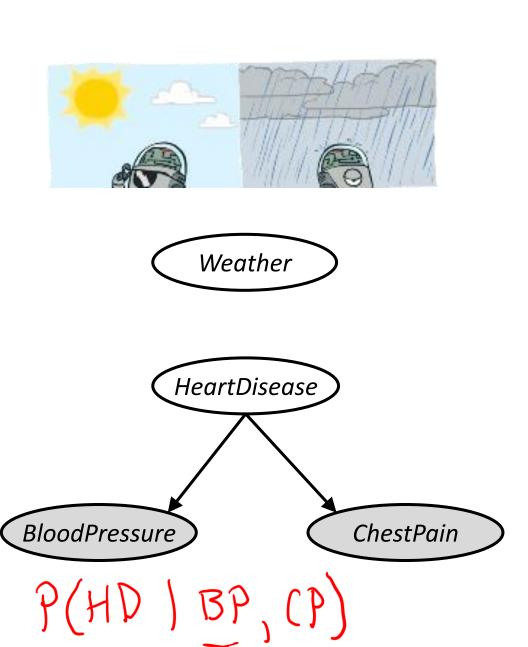
#### Nodes: variables (with domains)

- Can be assigned (observed) or unassigned (unobserved)
- We'll shade node to indicate observed variables
- Observed does not mean Variable = true
  Observed just means that we will have the value for that variable

#### Edges

- Indicate "direct influence" between variables
- Absence of edges: encode conditional independence

For now: imagine that arrows mean direct causation (in general, they don't!)



# Maggie Makar, University of Michigan



https://mymakar.github.io/



Assistant Professor
Computer Science and Engineering
University of Michigan

Causally-motivated shortcut removal using auxiliary labels
M. Makar, B. Packer, D. Moldovan, D. Blalock, Y. Halpern, A. D'Amour
AlStats 2022 [paper]

#### Pneumonia detection under biased sampling

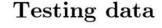
#### Training data

Target label:

Healthy Pneumonia

$$Y = 0$$

Y = 1



Man with pneumonia



Woman with pneumonia





Auxiliary label:



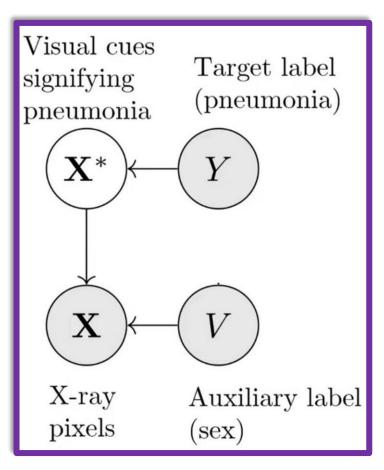




 $P(\text{Pneumonia}) = 0.99 \ P(\text{Pneumonia}) = 0.01$ 

Shortcut learning

Cases courtesy of Dr. Andrew Dixon, Dr Henry Knip, Dr. Usman Bashir, and Dr. Ian Bickle, Radiopaedia.org, rID: 48366, 31388, 18394 and rID: 50318



Causally-motivated shortcut removal using auxiliary labels
M. Makar, B. Packer, D. Moldovan, D. Blalock, Y. Halpern, A. D'Amour
AlStats 2022 [paper]

# Danielle Belgrave, Microsoft Research





Vice President AI/ML GSK



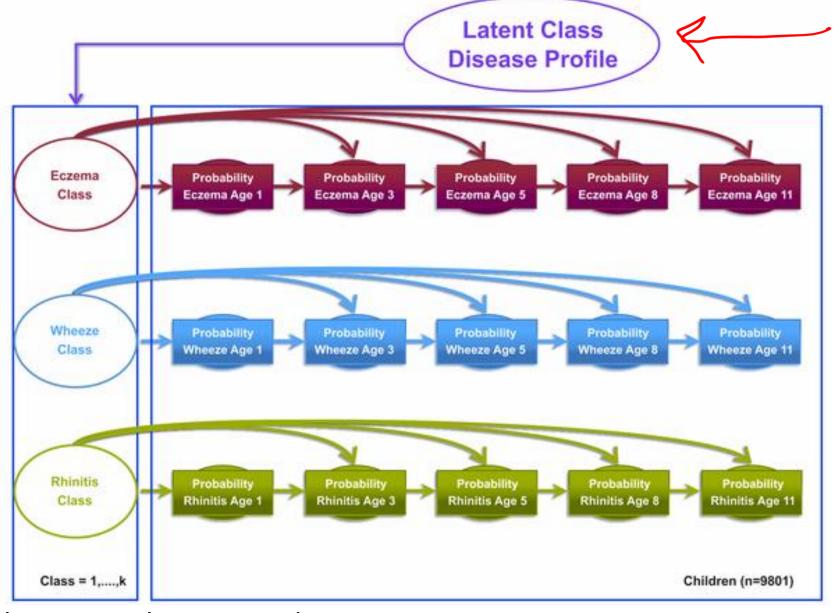
https://www.daniellebelgrave.com

Developmental Profiles of Eczema, Wheeze, and Rhinitis:

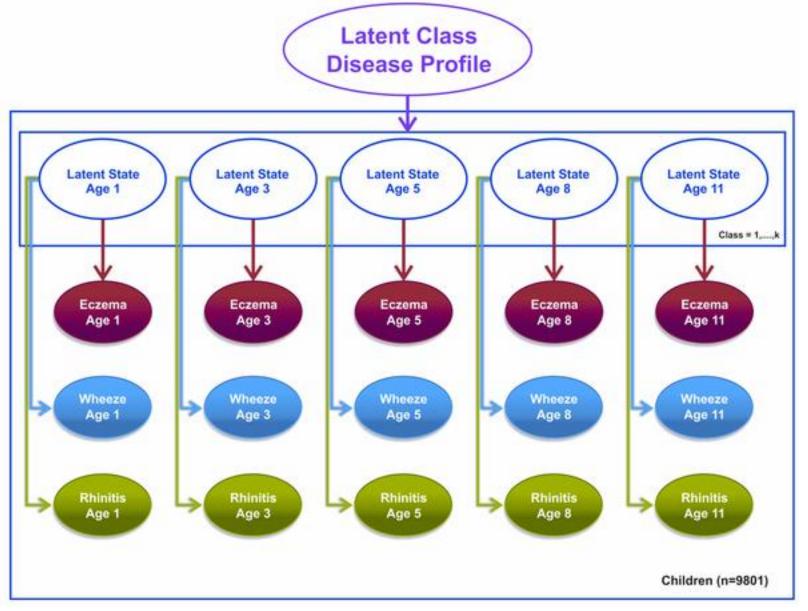
Two Population-Based Birth Cohort Studies

Danielle Belgrave, et al. PLOS Medicine, 2014

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748



Danielle Belgrave, et al. *PLOS Medicine*, 2014 <a href="https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748">https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748</a>



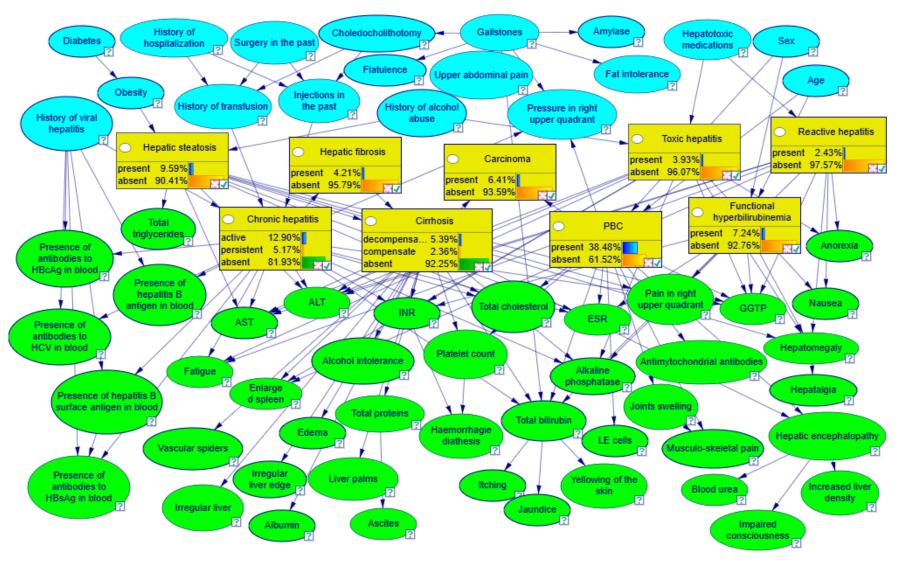
Danielle Belgrave, et al. *PLOS Medicine*, 2014 <a href="https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748">https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748</a>

| Characteristic  | MAAS Coho | ort         | ALSPAC Cohort |         | Joint MAAS and A | LSPAC Cohort |             |
|-----------------|-----------|-------------|---------------|---------|------------------|--------------|-------------|
|                 | n/Total   | Percent     | n/Total       | Percent | n/Total          | Percent      |             |
| Gender (Female) | 617/1,136 | 54.3        | 4,212/8,665   | 48.61   | 4,829/9,801      | 49.3         |             |
| Eczema          |           |             |               |         |                  |              |             |
| Age 1 y         | 383/1,077 |             |               |         | <i>n</i> /Total  |              | Dorcont     |
| Age 3 y         | 355/1,061 |             |               |         | /// i Otai       |              | Percent     |
| Age 5 y         | 340/1,050 |             |               |         |                  |              |             |
| Age 8 y         | 285/1,027 | Gender (    | (Female)      |         | 617/1,136        |              | 54.3        |
| Age 11 y        | 216/924   |             |               |         |                  |              |             |
| Wheeze          |           | Eczema      |               |         |                  |              |             |
| Age 1 y         | 300/1,087 |             |               |         |                  |              |             |
| Age 3 y         | 257/1,095 | Age 1 y     |               |         | 383/1,077        |              | 35.6        |
| Age 5 y         | 238/1,056 | rige i y    |               |         | 303/1/07/        |              | 33.0        |
| Age 8 y         | 185/1,024 | 1 A G G G V |               |         | 355/1,061        |              | 33.5        |
| Age 11 y        | 173/916   | Age 3 y     |               |         | 333/1,001        |              | 33.3        |
| Rhinitis        |           | A or o E v  |               |         | 240/1.050        |              | 22.4        |
| Age 1 y         | 8/943     | Age 5 y     |               |         | 340/1,050        |              | 32.4        |
| Age 3 y         | 49/1,075  |             |               |         | 205/4 225        |              | <b>27</b> 0 |
| Age 5 y         | 292/1,039 | Age 8 y     |               |         | 285/1,027        |              | 27.8        |
| Age 8 y         | 297/1,027 |             |               |         |                  |              |             |
| Age 11 y        | 321/927   | Age 11 y    |               |         | 216/924          |              | 23.4        |

Danielle Belgrave, et al. PLOS Medicine, 2014

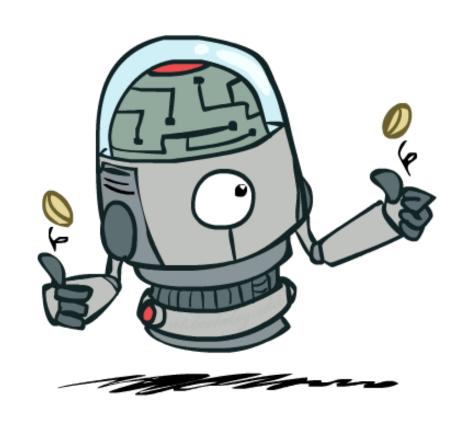
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748

# Example: Liver Disorders



https://demo.bayesfusion.com/bayesbox.html

# Independence



# Independence

Two variables X and Y are *independent* if

$$\forall x,y \qquad \underline{P(x,y)} = \underline{P(x)} \ \underline{P(y)}$$

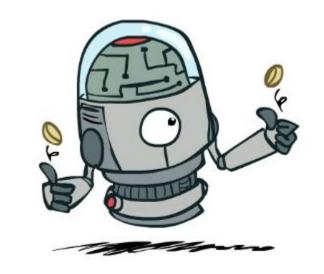
- This says that their joint distribution *factors* into a product of two simpler distributions
- Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:

$$\forall x,y P(x \mid y) = P(x)$$
 or  $\forall x,y P(y \mid x) = P(y)$ 

Example: two dice rolls  $R_1$  and  $R_2$ 

$$P(R_1=5, R_2=5) = P(R_1=5) P(R_2=5) = 1/6 \times 1/6 = 1/36$$

$$P(R_2=5 \mid R_1=5) = P(R_2=5) = \frac{1}{6}$$

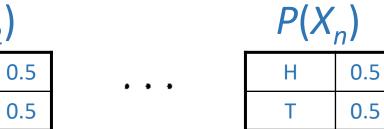


# Example: Independence

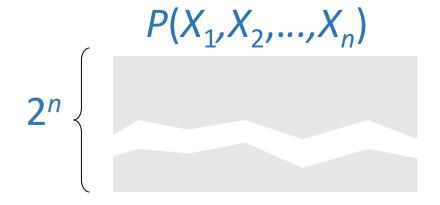
n fair, independent coin flips:

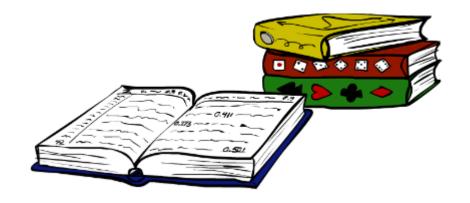
| $P(X_1)$ |     |  |  |  |
|----------|-----|--|--|--|
| Н        | 0.5 |  |  |  |
| Т        | 0.5 |  |  |  |

| $P(X_2)$ |     |  |  |  |
|----------|-----|--|--|--|
| Н        | 0.5 |  |  |  |
| Т        | 0.5 |  |  |  |



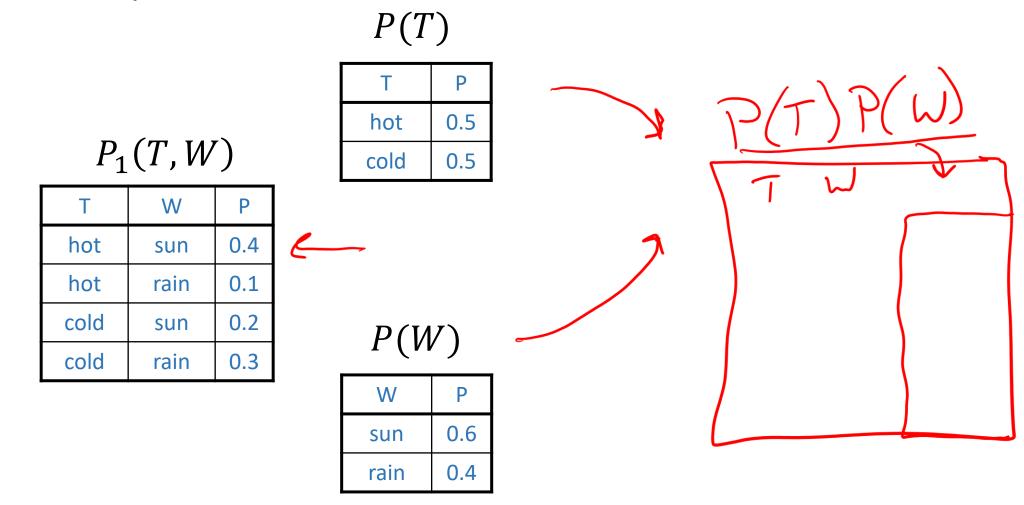






# Poll 1

### Are T and W independent?



# Poll 1

### Are T and W independent?

No

P(T,W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

P(T)

| Т    | Р   |
|------|-----|
| hot  | 0.5 |
| cold | 0.5 |



P(W)

| W    | Р   |
|------|-----|
| sun  | 0.6 |
| rain | 0.4 |

P(T)P(W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.3 |
| hot  | rain | 0.2 |
| cold | sun  | 0.3 |
| cold | rain | 0.2 |

# Example: Traffic

#### Variables:

R: rain or not

■ T: traffic or not





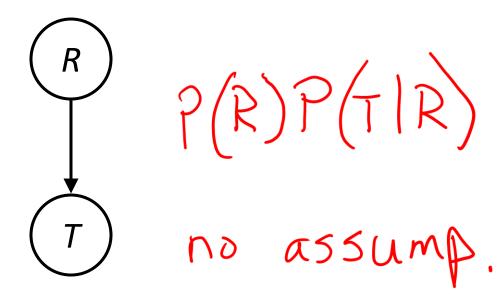
Model 1: independence

(R) P(R) P(T)





Model 2: rain affects traffic



Why is an agent using model 2 better?

# Conditional Independence

Absolute (unconditional) independence very rare (why?)

Conditional independence is our most basic and robust form of knowledge about uncertain environments.

X is conditionally independent of Y given Z if and only if:

$$\forall x,y,z \qquad P(x \mid y,z) = P(x \mid z)$$

or, equivalently, if and only if

$$\forall x,y,z \qquad P(x,y\mid z) = P(x\mid z) P(y\mid z)$$



# Independence Rules

#### Independence

If A and B are independent, then:

### Conditional independence

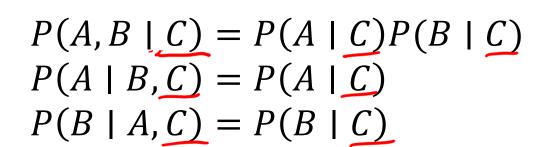
If A and B are conditionally

independent given C, then:

$$P(A,B) = P(A)P(B)$$

$$P(A \mid B) = P(A)$$

$$P(B \mid A) = P(B)$$



# Conditional Independence

P(Traffic, Rain, Umbrella)

If it's rainining, the probability that there is traffic doesn't depend on whether see an umbrella:

P(+traffic | +umbrella, +rain) = P(+traffic | +rain)

The same independence holds if it's not raining:

P(+traffic | +umbrella, -rain) = P(+traffic | -rain)

Traffic is *conditionally independent* of Umbrella given Rain:

■ P(Traffic | Umbrella, Rain) = P(Traffic | Rain)

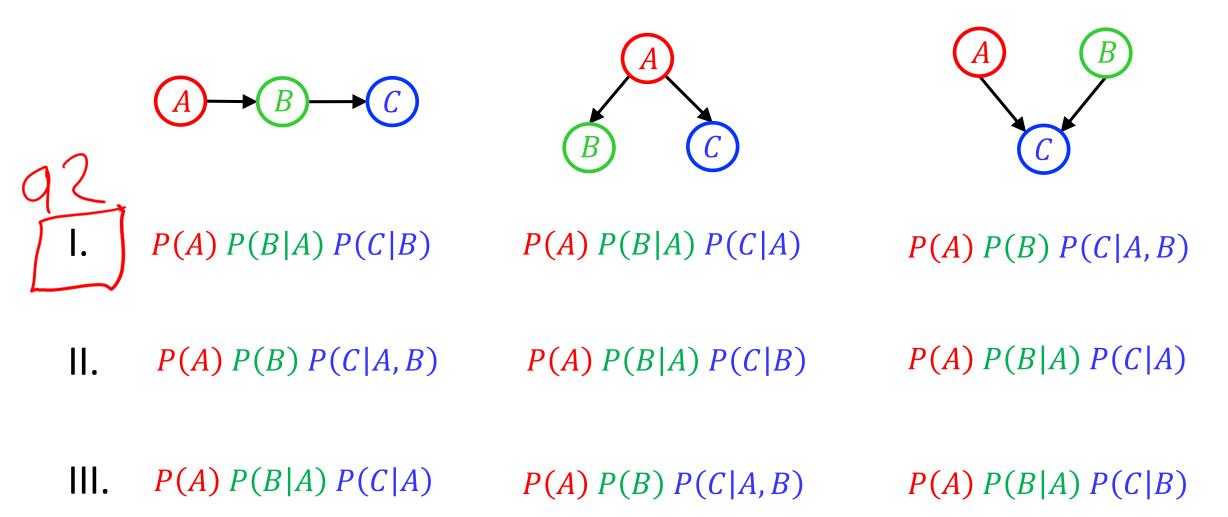
#### Equivalent statements:

- P(Umbrella | Traffic , Rain) = P(Umbrella | Rain)
- P(Umbrella, Traffic | Rain) = P(Umbrella | Rain) P(Traffic | Rain)
- One can be derived from the other easily



### Poll 2

Match the product of CPTs to the Bayes net.



# Conditional Independence Semantics

# V

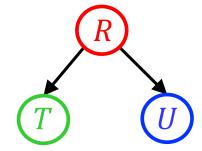
#### Common local releationships within a Bayes net

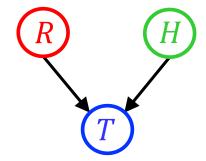
**Causal Chain** 

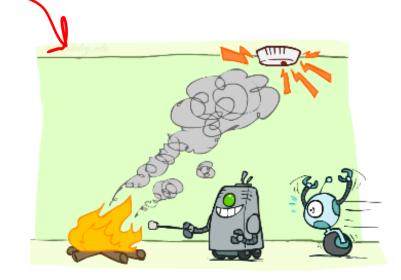
**Common Cause** 

**Common Effect** 











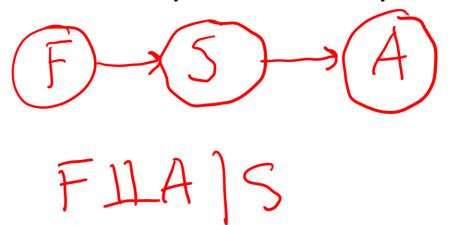


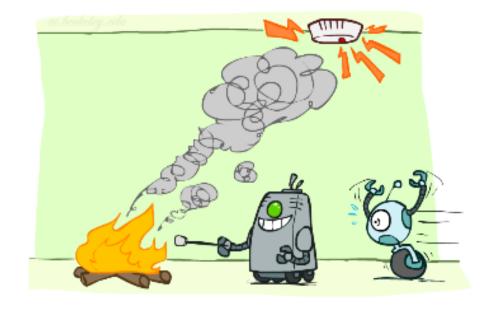
### Causal Chain

No: FILA

#### Fire, Smoke, Alarm

Causal story to create Bayes net





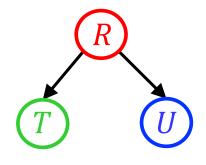
- Assumptions
- Joint distribution

$$P(F, S, A) = P(F) P(S|F) P(A|F5)$$
  
 $P(F, S, A) = P(F) P(S|F) P(A|S)$ 

### Common Cause

#### Chain rule:

$$P(x_1, x_2,..., x_n) = \prod_i P(x_i \mid x_1,..., x_{i-1})$$





### Trivial decomposition:

P(Rain, Traffic, Umbrella) =

With assumption of conditional independence:

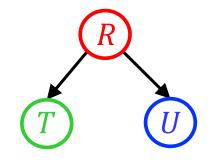
P(Raint, Traffic, Umbrella) =

### Common Cause

TILU!

#### Chain rule:

$$P(x_1, x_2,..., x_n) = \prod_i P(x_i \mid x_1,..., x_{i-1})$$





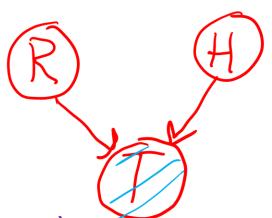
### Trivial decomposition:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

### **Common Effect**



#### Chain rule:

$$P(x_1, x_2,..., x_n) = \prod_i P(x_i \mid x_1,..., x_{i-1})$$

### Trivial decomposition:

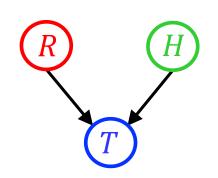
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

With assumption of conditional independence:

### Common Effect

#### Chain rule:

$$P(x_1, x_2,..., x_n) = \prod_i P(x_i \mid x_1,..., x_{i-1})$$





### Trivial decomposition:

P(Rain, Hockey, Traffic) = P(Rain) P(Hockey | Rain) P(Traffic | Rain, Hockey)

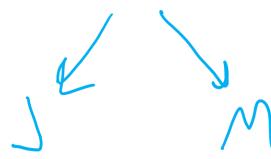
With assumption of conditional independence:

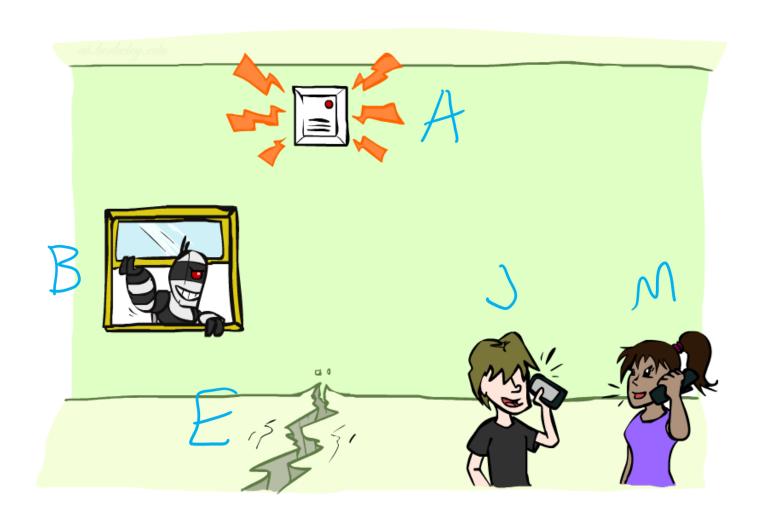
P(Rain, Hockey, Traffic) = P(Rain) P(Hockey) P(Traffic | Rain, Hockey)

# Example: Alarm Network

#### **Variables**

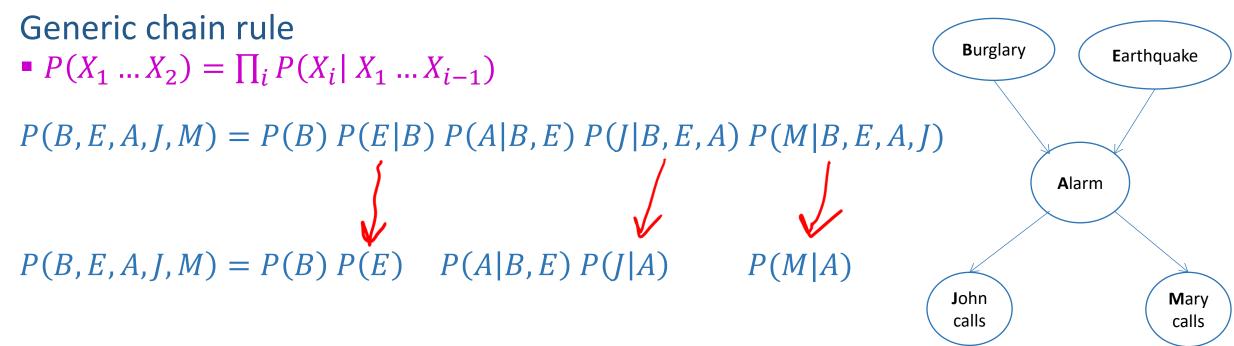
- B Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!





# Example: Alarm Network

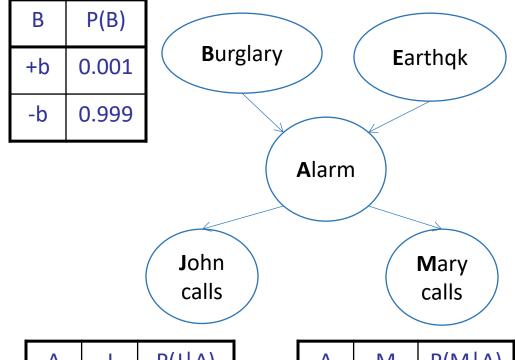
Joint distribution factorization example



#### Bayes nets

 $P(X_1 ... X_2) = \prod_i P(X_i | Parents(X_i))$ 

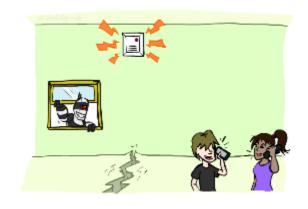
# Example: Alarm Network



| Α  | J        | P(J A) |
|----|----------|--------|
| +a | +j       | 0.9    |
| +a | <u>.</u> | 0.1    |
| -a | +j       | 0.05   |
| -a | -j       | 0.95   |

| Α  | M  | P(M A) |
|----|----|--------|
| +a | +m | 0.7    |
| +a | -m | 0.3    |
| -a | +m | 0.01   |
| -a | -m | 0.99   |

| Е  | P(E)  |  |
|----|-------|--|
| +e | 0.002 |  |
| -е | 0.998 |  |



| В  | Е  | Α  | P(A B,E) |
|----|----|----|----------|
| +b | +e | +a | 0.95     |
| +b | +e | -a | 0.05     |
| +b | -e | +a | 0.94     |
| +b | -e | -a | 0.06     |
| -b | +e | +a | 0.29     |
| -b | +e | -a | 0.71     |
| -b | -e | +a | 0.001    |
| -b | -e | -a | 0.999    |

# Conditional Independence Semantics

### For the following Bayes nets, write the joint P(A, B, C)

- 1. Using the chain rule (with top-down order A,B,C)
- Using Bayes net semantics (product of CPTs)

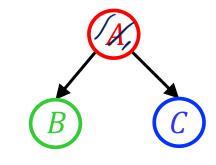




P(A) P(B|A) P(C|A,B)

Bayes Net P(A) P(B|A) P(C|B)

Assumption: P(C|A,B) = P(C|B)C is independent from A given B

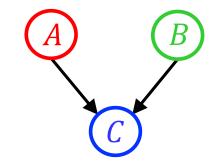


P(A) P(B|A) P(C|A,B)

P(A) P(B|A) P(C|A)

Assumption: P(C|A,B) = P(C|A)

C is independent from B given A



P(A) P(B|A) P(C|A,B)

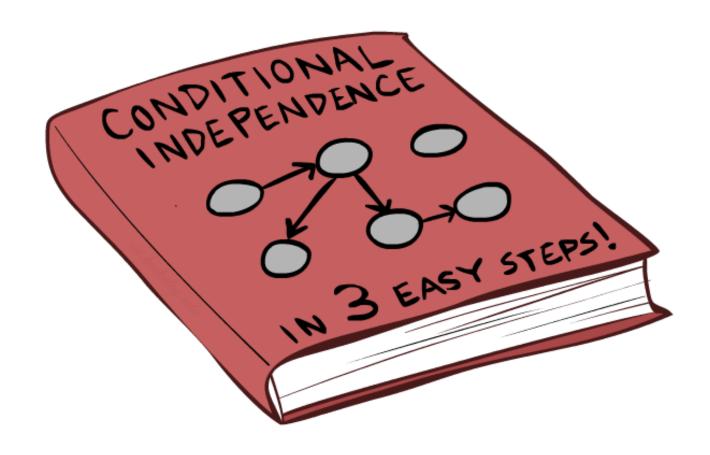
P(A) P(B) P(C|A,B)

Assumption:

P(B|A) = P(B)

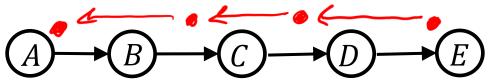
A is independent from B given { }

# Bayes Net Independence

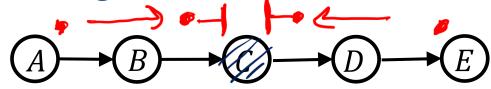


# Answering Independence Questions

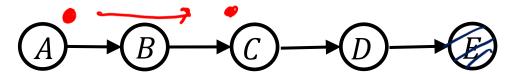
Is A independent from E?



Is A independent from E given C?



Is A independent from C given E?



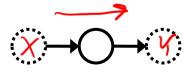
# Active / Inactive Paths

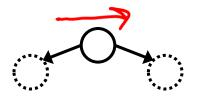
# Question: Are X and Y conditionally independent given evidence variables {Z}?

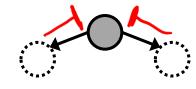
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!

#### \_\_\_\_\_

### Active Paths





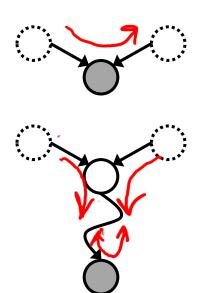


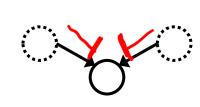
**Inactive Paths** 

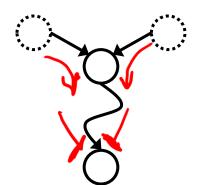
#### A path is active if each triple is active:

- Causal chain  $A \rightarrow B \rightarrow C$  where B is unobserved (either direction)
- Common cause  $A \leftarrow B \rightarrow C$  where B is unobserved
- Common effect (aka v-structure)
   A → B ← C where B or one of its descendents is observed

All it takes to block a path is a single inactive segment





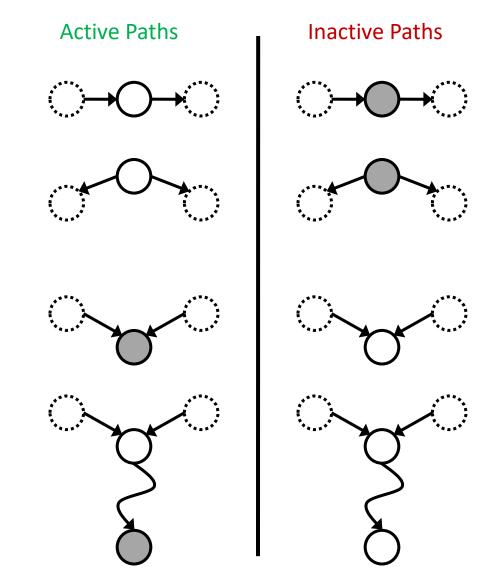


# **Bayes Ball**

Question: Are X and Y conditionally independent given evidence variables {Z}?



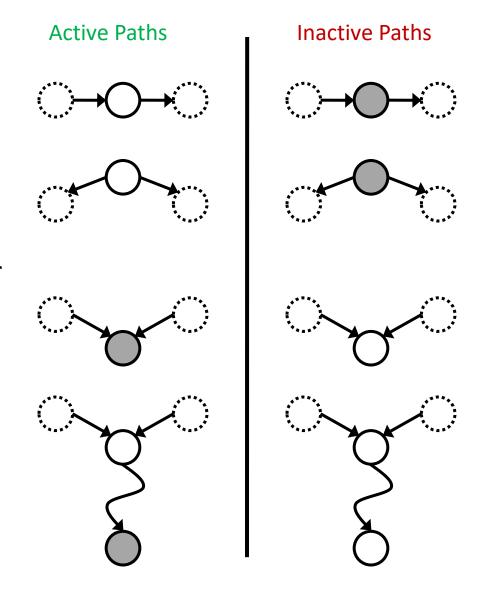
Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams)." *Proceedings of the Fourteenth conference on Uncertainty in Artificial Intelligence.* 1998.



## **Bayes Ball**

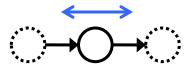
Question: Are X and Y conditionally independent given evidence variables {Z}?

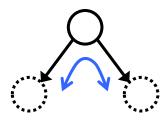
- 1. Shade in Z
- 2. Drop a ball at X
- The ball can pass through any active path and is blocked by any inactive path (ball can move either direction on an edge)
- 4. If the ball reaches Y, then X and Y are NOT conditionally independent given Z

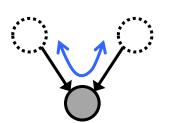


# **Bayes Ball**

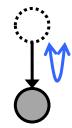
### **Active Paths**



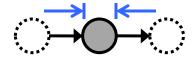


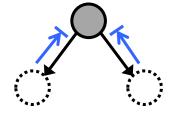


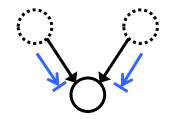


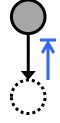


#### **Inactive Paths**



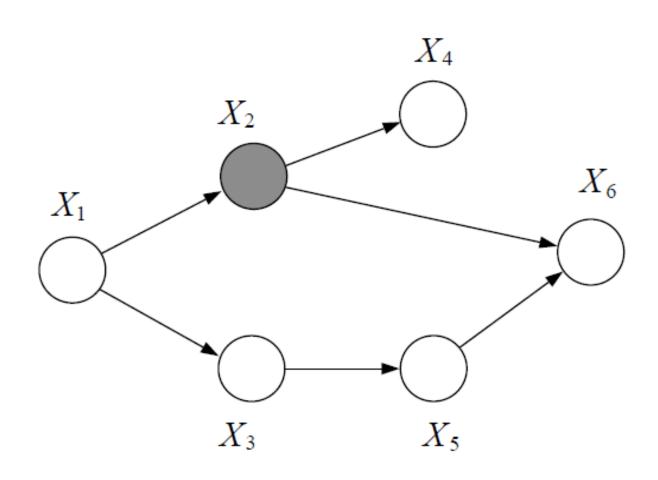






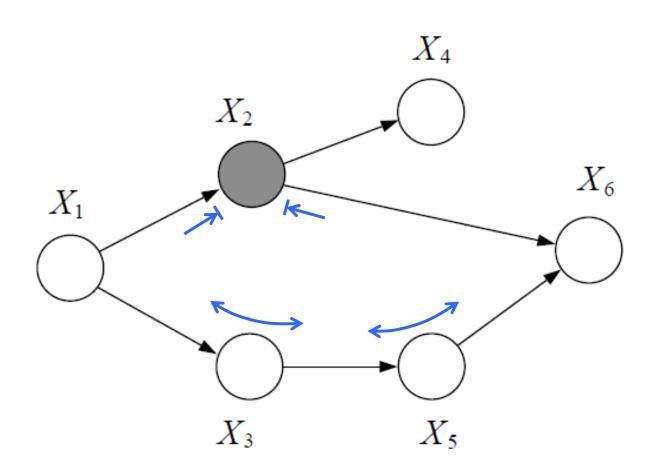


Is  $X_1$  independent from  $X_6$  given  $X_2$ ?

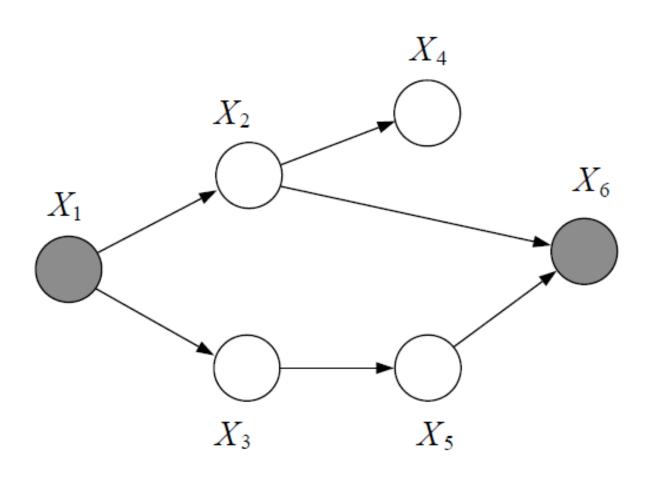


Is  $X_1$  independent from  $X_6$  given  $X_2$ ?

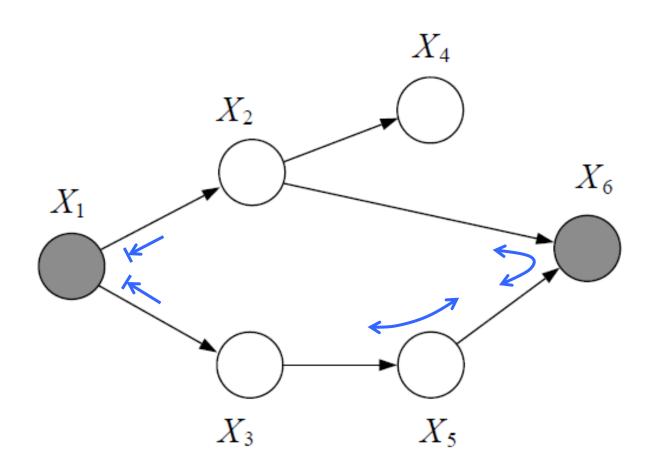
No, the Bayes ball can travel through  $X_3$  and  $X_5$ .



Is  $X_2$  independent from  $X_3$  given  $X_1$  and  $X_6$ ?

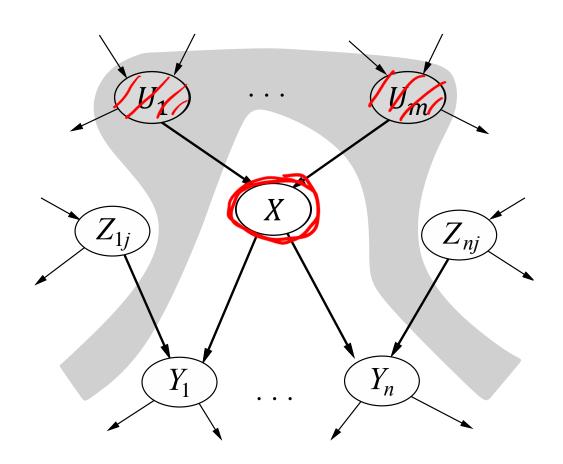


Is  $X_2$  independent from  $X_3$  given  $X_1$  and  $X_6$ ? No, the Bayes ball can travel through  $X_5$  and  $X_6$ .



# Conditional Independence Semantics

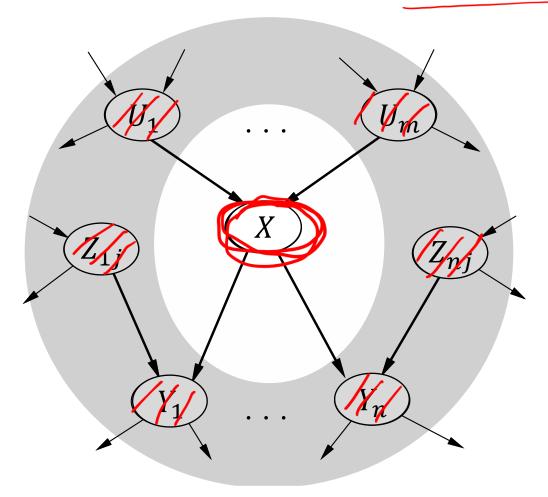
Every variable is conditionally independent of its non-descendants given its parents



### Markov blanket

A variable's Markov blanket consists of parents, children, children's other parents

Every variable is conditionally independent of all other variables given its Markov blanket

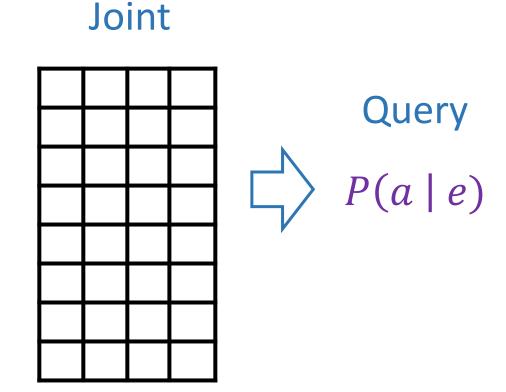


# Answer Any Query from Joint Distribution

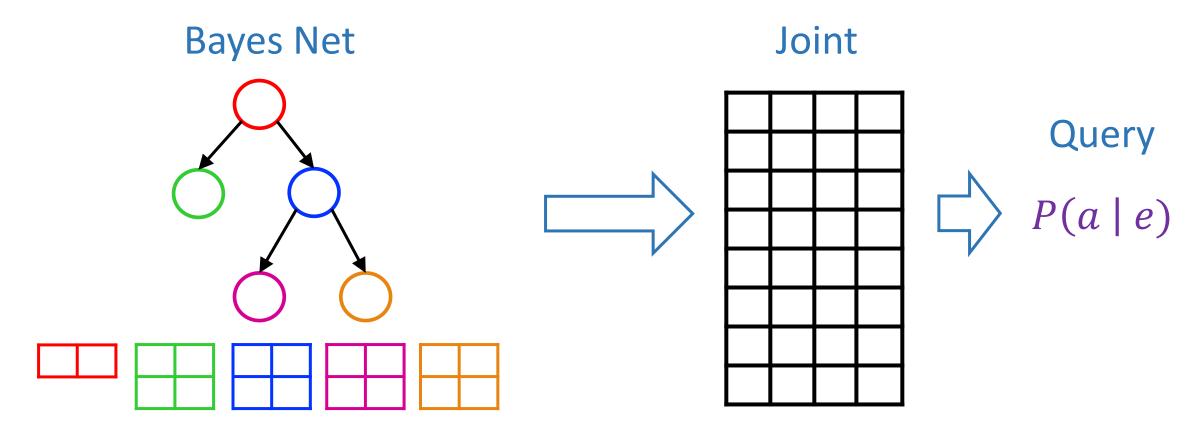
Joint distributions are the best!

#### Problems with joints

- We aren't given the joint table
  - Usually some set of conditional probability tables
- Huge
  - lacktriangleright n variables with d values
  - $d^n$  entries



# Answer Any Query from Bayes Net



P(A) P(B|A) P(C|A) P(D|C) P(E|C)

# Next: Answer Any Query from Bayes Net

