15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

1 SATurdays are for everyone
1. Determine whether the sentences below are satisfiable or unsatisfiable (using any method you like).
(a) (“(yV-y)Va)A(zV(z < —2))
Satisfiable
(b) ~@Vo(zA(zvT)) = ~(yA(y V(T = 1))
Satisfiable
(¢) (T <= —a(zV-2)V2)V2)A-(zA((zN2) = x))

Unsatisfiable

2. Suppose A = B. Which of the following statements must be true for all truth assignments to A and
B?

(b)

(a) ANB (¢c) B=A (e) B
(b) A= B (d) AVB

3. How would we formulate the SAT problem as a CSP? What are the variables? Domains? Constraints?

SAT can be modeled as a CSP in which the variables are literals with domain {T, 1}, and the constraints
are the clauses themselves.

4. Suppose we have an algorithm which determines whether a sentence is satisfiable or not. Given two
sentences A, B, how could we determine whether A = B?

If A = B, all models which satisfy A also satisfy B.

5. Determine whether the sentence below is satisfiable or unsatisfiable using DPLL. Break ties by assigning
variables in alphabetical order, starting with false. If satisfiable, what model does the algorithm find?

(AVB)A(BVCVD)A(=AV-BVC)A(=AV~CV-D)AAA(CV-D)

Assign T to A (unit clause): (BV CV D)A(-BV C)A(~CV-D)A(CV-D)

Assign L to B: (C'VD)A(=CV-D)A(CV-D)

Assign L to C: (D) A (=D)

Assign T to D (unit clause - could also be L): =D evaluates to false, so we have to backtrack.

Assign T to C: (—=D)
Assign | to D (unit clause)! This sentence is satisfiable; the model found is A: T,B: 1,C:T,D: L.



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

2 All About Logic

1. Propositional Logic

(a) Vocab check: are you familiar with the following terms?

i

ii.

iii.

iv.

vi.

vii.

viii.

xi.

xii.

xiii.

Xiv.

Symbols
Variables that can be T/F (capital letter)

Operators
and, or, not, implies, equivalent
Sentences

Symbols connected with operators, can be T/F

Equivalence

True in all models that a and b implies each other (a equivalent to b)

Literals
atomic sentence
Knowledge Base

Sentences agents know to be true

Entailment

a entails b iff V models, a true implies b true

Query
A sentence we want to know whether it’s true (usually we want to know whether KB entails
q)

ix. Satisfiable

At least one model makes the sentence true

. Valid

True for all models

Clause - Definite, Horn clauses

Clause - disjunction of literals; definite - clause with exactly one positive literal, horn - clause
with at most one positive literal

Model Checking

check if sentences are true in given model/checks entailment

Theorem Proving

Search for a sequence of proof steps. (e.g. Forward Chaining)

Modus Ponens
From P, (P — Q), infer @

2. Chipotle?

(a) Sean is a student in class. In his knowledge base, he admits that if he doesnt get bored, he will
pass the class no matter what he does later on. However, if he gets bored and he ends up going
directly to Chipotle, he believes he can always pass the class after getting food. He doesn’t really
use Facebook. Represent Sean’s knowledge base in propositional logic. Let B be the symbol
representing if Sean gets bored, C representing going to Chipotle, I representing using Facebook,
and P representing passing the class. (Select all that can represent his Knowledge Base)



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

i, iv
ii -B=P;BAC =P

ii, “\B= P;-P=-CVF
iil. B\/P;(ﬁB/\ﬁC/\F)\/P

iv. BVP;(-BVv-C)VP

3. Given the following propositional logic clauses, show R must be true and using only the resolution
inference rule to derive a contradiction. Your answer should be in the form of a graph, where each
resolvent is connected by lines to its two parent clauses. Use the clauses below as the initial set of nodes
in the graph.

Note: You do not need to use all the nodes, and you may use a node more than once.

PVQ ~PVR ~QVR

D @) @ ¢




15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

3 Adversarial Search (Minimax+Expectimax Pruning)

So we’ve done pruning on minimax trees, but what happens when we introduce chance nodes? Recall
that a chance node has the expected value of its children, and let each child have an equal probability
of being chosen.

Perform pruning on the following game tree and fill in the values at letter nodes. A is a maximizer, B
is a chance node, and C is a minimizer. Assume that values can only be in the range 0-9 (inclusive).

ARAY



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

ARAY

Solution:



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

4

CSPs

You've generously saved a row of 6 seats in Rashid for 6 of your 15-281 classmates (A-F!), and are
now trying to figure out where each person will be seated. You know the following pairs of people have
some kind of binary constraint between them:

(a)

(b)

A'B e AD e B E
A C e B C e C,F

Draw the constraint graph to represent this CSP.

@@(@
&) —®)

Some value is assigned to A. Which domains could change as a result of running forward checking
for A?

B, C, D. Forward checking for A only considers arcs where A is the head. This includes B —
A,C — A, D — A. Enforcing these arcs can change the domains of the tails.

Some value is assigned to A, and then forward checking is run for A. Then some value is assigned
to B. Which domains could change as a result of running forward checking for B?

C, E. Similar to the previous part, forward checking for B enforces the arcs A -+ B,C — B, E — B.
However, because A has been assigned, and a value is assigned to B, which is consistent wit hA
or else no value would have been assigned, the domain of A will not change.

Some value is assigned to A. Which domains could change as a result of running AC-3 after this
assignment?

B, C, D, E, F. Enforcing arc consistency can affect any unassigned variable in the graph that has
a path to the assigned variable. This is because a change to the domain of X results in enforcing
all arcs where X is the head, so changes propagate through the graph. Note that the only time in
which the domain for A changes is if any domain becomes empty, in which case the arc consistency
algorithm usually returns immediately and backtracking is required, so it does not really make
sense to consider new domains in this case.

Some value is assigned to A, and then arc consistency is enforced via AC-3. Then some value is
assigned to B. Which domains will and will not change as a result of enforcing arc consistency
after B’s assignment?

After assigning a value to A, and enforcing arc consistency, future assignments and enforcing arc
consistency will not result in a change to A’s domain. This means that D’s domain won’t change
because the only arc that might cause a change, D — A will never be enforced. However, the
domains of C, E and F do change.

Inot correlated with their grades



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

(f) You are now trying a brand new algorithm to solving CSPs by enforcing arc consistency via AC-3
initially, then after every even-numbered assignment of variables (after assigning 2 variables,
then after 4, etc.).

You have to backtrack if, after assigning a value to variable X, there are no constraint-satisfying
solutions. Mathematically, for a single variable with d values remaining, it is possible to backtrack
d—1 times in the worst case. For the following constraint graph, assume each variable has domain
of size d. How many times would you have to backtrack in the worst case for the specified orderings

of assignments?

i. ABCDEFG:
0

ii. GECABDEF:
0

ili. GFEDCBA:
3(d — 1)

Note that the given constraint graph represents a tree-structured CSP. Therefore (as seen
in lecture), any order of assignments which assigns variables from root to leaves in some
topological ordering of the nodes guarantees that we do not have to backtrack given that
root-to-leaf arcs are consistent.

ABCDEFG and GECABDF are both orderings which satisfy the above description, which
means we essentially initially enforce arc consistency, then assign values to nodes from root
to leaves.

GFEDBCA is not such an ordering, so while the odd assignments are guaranteed to be part of
a valid solution, the even assignments are not (because arc consistency was not enforced after
assigning the odd variables). This means that you may have to backtrack on every even as-
signment, specifically F, D, and B. Note that because you know whether or not the assignment
to F is valid immediately after assigning it, the backtracking behavior is not nested (meaning
you backtrack on F up to d—1 times without assigning further variables - otherwise, we would
have a worst-case number of backtracks of n3). The same is true for D and B, so the overall
behavior is backtracking 3(d — 1) times.

(g) Recall the CSP from part (a). The actual constraints are as follows:

Both C and E want to sit next to B.

A wants to sit next to D, but not next to B or C.

F and C had a falling out over whether AI or blockchain was cooler, so there needs to be at least
2 seats between them.

B gets to class first and sits down in seat 3. Run AC-3 to determine the final seating arrangement.

In order: F, E, B, C, D, A. There may be alternate solutions.



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

5 Search (Algorithms & Properties)

(a) When can we guarantee completeness and optimality (if ever) for each of the following search
algorithms we’ve seen in class? For each algorithm, indicate under what conditions it is complete
and/or optimal.

Algorithm Complete Optimal

Breadth-First

Depth-First

Iterative Deepening

A*
Algorithm Complete Optimal
Breadth-First Always When all edge costs are
equal and non-negative
Depth-First Never Never
. . hen all
Iterative Deepening Always When all edge costs are
equal and non-negative
When an admissible
A Always (trees) or consistent

(graphs) heuristic is
used

(b) Consider a dynamic A* search where after running A* graph search and finding an optimal path
from start to goal (assuming there’s only one goal), the cost of one of the edges X — Y in the
graph changes. Instead of re-running the entire search, you want to find a more efficient way of



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

returning the optimal path for this new search problem.

For each of the following changes, describe how the optimal path cost would change (if at all).
If the optimal path itself changes, describe how to find the new optimal path. Denote ¢ as the
original cost of X — Y, and assume n > 0.

i

ii.

iii.

iv.

c is increased by n, X — Y is on the optimal path, and X was explored by the initial search.

The optimal path could change if the original cost is no longer the cheapest when adding the
amount of n.

We would re-explore all previously expanded nodes with the new edge cost of X — Y. If Y
is explored, we end the search for all paths that will end at Y in the previous search add the
goal node together with the previous optimal path cost of Y — Goal to the frontier, then we
keep searching down until we pop the goal node out of the frontier. This means that you are
re-exploring every path that was originally blocked by a path that included the edge X — Y.
If the cheapest path to Y is discovered, then we already know the optimal path and path cost
of Y — Goal

c is decreased by n, X — Y is on the optimal path, and X was explored by the initial search.

The original optimal paths cost decreases by n because X — Y is on the original optimal path.
The cost of any other path in the graph will decrease by at most n (either n or 0 depending
on whether or not it includes X Y ). Because the optimal path was already cheaper than any
other path, and decreased by at least as much as any other path, it must still be cheaper than
any other path.

cisincreased by n, X — Y is not on the optimal path, and X was explored by the initial search.

The cost of the original optimal path, which is lower than the cost of any other path, stays the
same, while the cost of any other path either stays the same or increases. Thus, the original
optimal path is still optimal.

c is decreased by n, X — Y is not on the optimal path, and X was explored by the initial
search.

We would put previously expanded node (with their path and path cost) on the frontier and
search for X, as well as the optimal path. If X is expanded this time, we clear all paths on
the frontier except for the original optimal path and the cheapest path leading to X plus the
edge X — Y. Then we do A* search with this new frontier.

There are two possible paths in this case. The first is the original optimal path, which is
considered by adding the previous goal node back onto the frontier. The other option is the
cheapest path that includes X — Y , because that is the only cost that has changed. There is
no guarantee that the node ending at Y , and thus the subtree rooted at Y contains X — Y
, so the optimal path leading to X must be found in order to find the cheapest path through
X=Y.

c is increased by n, X — Y is not on the optimal path, and was not explored by the initial
search.



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

vi.

This is the same as part (c).

c is decreased by n, X — Y is not on the optimal path, and was not explored by the initial
search (assuming the edge weights ¢ can’t go negative.)

Assuming that the cost of X — Y remains non-negative, because the edge was never ex-
plored, the cost of the path to X is already higher than the cost of the optimal path. Thus,
the cost of the path to Y through X can only be higher, so the optimal path remains the same.

10



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

6

A

Local Search

Objective function

n
»

State space

Consider how each of the following searches performs in state space above. Recall that in the context
of local search, our goal is to find the state that optimizes the objective function.

(a)

Hill-climbing search with start state c
Does it terminate? If so, where?

Does it find the global maximum?

It terminates at the local maximum (to the right of ¢). It is not complete.

Random-restart hill climbing with randomly generated initial states a, d, and b
Does it terminate? If so, where?

Does it find the global maximum?

Random-restart hill climbing conducts a series of searches. For start states a and d, the search
will terminate immediately since there are no better neighboring states. For start state b, the
search will reach the global maximum, so it is complete. In general, random-restart hill climbing
is “trivially complete with probability approaching 1, because it will eventually generate a goal
state as the initial state.” (AIMA Chapter 4, page 124)

Stochastic hill-climbing that allows sideways moves with start state d
Does it terminate? If so, where?

Does it find the global maximum?

This search will not terminate. Since we allow sideways movement and d is on a flat local maximum,
stochastic hill-climbing will choose randomly from one of its neighboring states with the same
objective function value. This will result in an endless loop. It is not complete.

11



15-281: AI: Representation and Problem Solving Fall 2019

Recitation 5 (Midterm Review) September 27

Now, let’s revisit the 5-QUEENS problem. Our goal is to try to place 5 queens on a 5x5 chessboard
with no conflict between any two queens. However, this time, there is a twist: our chessboard has a wall!

If the wall blocks the path between two queens (horizontal, vertical, or diagonal) then those two queens
will not be in conflict. The wall cannot be moved, and a queen cannot pass through the wall.

Below is some pseudocode to try to solve the 5-QUEENS problem with hill climbing.

function 5-QUEENS-HILL-CLIMBING (problem)
current_state = problem.INITIAL-STATE
loop do
neighbor = state with lowest # of conflicts between queens obtained by
making one legal chess move from current_state
if neighbor.num_conflicts >= current_state.num_conflicts
return current_state
current_state = neighbor

Using the given starting state, pseudocode, and the rules regarding walls, answer the following questions.

(a) Run 5-QUEENS-HILL-CLIMBING on the given start state until completion. Where do the queens
end up? Is this a goal state?

The queens will end up at D1, B2, E3, A4, and D5. This is not a goal state because there is a
conflict between D1 and D5.

Our starting state has 4 conflicts. If we move A3 to E3, we see that the new state only has 2
conflicts, which is the lowest number of conflicts among all the neighbors. From here, we can move
B4 to A4 to reduce the number of conflicts to 1. This is no conflict between this new position and
D1 due to the brick wall. From here, we cannot take any steps to reduce the number of conflicts.

(b) If we remove the brick wall, will 5-QUEENS-HILL-CLIMBING end up in a global optima?

If we remove the brick wall, 5-QUEENS-HILL-CLIMBING will not end up in a global optima. It
will be at a state whose value is not less than its neighbors and is not a global optima. The state
and all its neighboring states will have 2 or more conflicts.

12



	SATurdays are for everyone
	All About Logic
	Adversarial Search (Minimax+Expectimax Pruning)
	CSPs 
	Search (Algorithms & Properties)
	Local Search

