15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

1 Discussion-Based Warm Ups

(a) Determine which of the following are correct, and explain your reasoning:

(i) (AVB) £ (A= B)

(i) A <= BEAV-B

(iii) (AV B) A =(A = B) is satisfiable.

(b) What is the difference between satisfiability and entailment (think about the purpose and requirements
of each)?

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench, breeze, glitter bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, 1))
TELL the KB the temporal “physics” sentences for time ¢
safe — {|x,y] : ASK(KB, OK;_HJ = frue}
if ASK(KB, Glitter') = true then
plan «— [Grab] + PLAN-ROUTE(current, {[1,1]}, safe) + [Climb]
if plan is empty then
unvisited — {[z, y] : ASK(KH,L_*;_H] = false forall ' < t} B
| plan «— PLAN-ROUTE(current, unvisited M safe, safe)
if plan is empty and ASK(KB, HaveArrow") = true then
possible_wumpus — {[z,y] : ASK(KB,— W.,) = false} C
| plan «— PLAN-SHOT(current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk
not_unsafe — {[z,y] : ASK(KB,—- {JK;”} = false}
plan +— PLAN-ROUTE(current, unvisited n not-unsafe, safe)
if plan is empty then
plan « PLAN-ROUTE(current, {[1, 1]}, safe) + [Climb] E
\action «— POP(plan)
TELL(K B, MAKE-ACTION-SENTENCE(action, 1))
te—1t+1

return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position
goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem «+ ROUTE-PROBLEM(current, goals,allowed)
return A*-GRAPH-SEARCH(problem)

Figure 1: Hybrid-Wumpus-Agent from AIMIA 3rd ed. It uses a propositional knowledge base to infer the
state of the world, and a combination of problem-solving search and domain-specific code to decide what
actions to take.

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

2 Wandering in Wumpus World

We bring together what we have learned in lecture as well as the ideas of search so far in order to construct
wumpus world agents that use propositional logic. The first step is to enable the agent to deduce, to the
extent possible, the state of the world given its percept history. This requires writing down a complete
logical model of the effects of actions. We also show how the agent can keep track of the world efficiently
without going back into the percept history for each inference. Finally, we show how the agent can use logical
inference to construct plans that are guaranteed to achieve its goals.

Try it out: http://thiagodnf.github.io/wumpus-world-simulator/

Throughout this question, we will present several screenshots from the Wumpus World simulator linked
previously. In each of these, assume that you do have an arrow on hand (as an extra exercise, consider how
the answers might be different if you did not have an arrow). Also, note that the location of the explorer can
be ignored. We just tried to place him somewhere where he wouldn’t be blocking the text!

(a) Consider the following Wumpus World state:

Figure 2: Entailment versus Satisfiability?

Based on our previous discussion around entailment and satisfiablity, identify locations where our
knowledge base entails that there must be a Wumpus, Pit, or safe path. Additionally, identify locations
where Wumpuses, Pit, and safe paths are not entailed but could be satisfied.

(b) Now, refer to Figure 2 from Page 2, and take a moment to familiarize yourself with the pseudocode to
understand how we might decide to act in Wumpus World. You’ll notice that we have labeled the key
decision-making portions of this code, and that different decisions need to be made given the state of
our knowledge-base.

Match each of the following states to one of the labeled code chunks in the pseudocode, and explain
your reasoning.

http://thiagodnf.github.io/wumpus-world-simulator/

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

Figure 3: Which code chunk is applicable for each of these states?

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

3 Axioms & Arrows

Up until now we have assumed that the plans we create always make sure that an actions preconditions
are satisfied. Let us now investigate what propositional successor-state axioms such as HaveArrow!*! <=
(HaveArrow' A =Shoot!) have to say about actions whose preconditions are not satisfied.

(a) First, let us consider what successor-state axioms are. How do they differ from action axioms, and why
might we choose to use them?

(b) Show that the axioms predict that nothing will happen when an action is executed in a state where its
preconditions are not satisfied.

(c) Consider a plan p that contains the actions required to achieve a goal but also includes illegal actions.
Is it the case that successor-state axiom will allow the actions?

We recommend that you write a truth table and ask yourself the following question when looking at
the truth table:

e Can I shoot if I don’t have an arrow?

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

4 SAT and DPLL

Recall the Davis-Putnam-Logemann-Loveland (DPLL) algorithm from lecture. DPLL conducts backtracking
search over possible models (i.e., assignments to all variables) with these additional checks:

e Return true if all clauses are satisfied (we have found the answer)
e Return false if any clause is falsified (need to backtrack).

e If all occurences of a symbol in as-yet-unsatisfied clauses have the same sign, then give the symbol that
value; e.g., in (mAV B) A (mAV =(C), set A to false, which satisfies all the remaining clauses.

e If a clause is left with a single literal, set the literal to satisfy the clause; e.g., in (B) A (=B V =(C), set
B to true to satisfy the left clause. This often leads to new unit clauses, as in this example where ~C'
will be in a clause by itself.

(a) What is the difference between truth table entailment and solving SAT with DPLL?

(b) Find if the following is satisfiable. Other than the above rules, assign values to symbols alphabetically,
and begin with symbol = true.

(mAVC) A (BV D) A(AV—C) A (=BV C) A (BV=C)

15-281: AI: Representation and Problem Solving Fall 2019

Recitation 4 September 20

5 Resolution

Resolution

Algorithm Overview
function PL-RESOLUTION?(KB, «) returns true or false
We want to prove that KB entails o
In other words, we want to prove that we cannot satisfy (KB and not)
1. Start with a set of CNF clauses, including the KB as well as —«
2. Keep resolving pairs of clauses until
A. You resolve the empty clause
Contradiction found!
KB A =« cannot be satisfied
Return true, KB entails o
B. No new clauses added
Return false, KB does not entail «

From the knowledge base below, prove =P; 5. Note that this is the same example as in Lecture 7. We
did not have time to step through the algorithm in lecture and we’ll do that now!

Knowledge Base

A
r N

~Po VB | | <Bia VP, VP | [P, VB, |

	Discussion-Based Warm Ups
	Wandering in Wumpus World
	Axioms & Arrows
	SAT and DPLL
	Resolution

