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1 Inference

Realizing that students aren’t particularly fond of reading the textbook, the 281 course staff have developed a
software that automatically scans the textbook and outputs key points for each individual chapter. However,
since the development of the software requires time and computational resources, the 281 staff decides to offer
a free one month trial to students, after which a paid subscription is necessary to keep using the software.
The following network and variables are used to represent the problem:

• Discount(D): +d if a discount is offered, −d otherwise

• Enjoys(E): +e if a student enjoys the software, −e otherwise

• Cost(C): +c if the software cost is < 20, −c otherwise

• Recommends(R): +s if the student recommends the software to a friend, −s otherwise

• Buys(B): +b if the student buys a software subscription, −b otherwise

(a) How can we represent the probability that a student buys and recommends the software using the
conditional probabilities at each node?

P (+b,+r) =
∑

c,d,e P (+b|c)P (c|d, e)P (d)P (e)P (+r|e)

This sum is equivalent to summing out the hidden variables in the join distribution:
∑

c,d,e P (d, e, c,+r,+b).

(b) The staff has surveyed students and collected data on whether the students enjoyed the software or not.
With this information, we want to perform a inference on a joint distribution where the query variable
is Buys (B).

(i) How can we represent the probability expression in terms of conditional probabilities from the
network?

P (B|E) = αP (B,E) = α
∑

d,c,r P (B,E, d, c, r) = P (E)α
∑

d,c,r P (d)P (c|d,E)P (B|c)P (r|E)

Note: Equation 13.9 on page 493 of the TB goes into detail about why we use α. In short,
when we are calculating conditional probabilities, α acts as a normalization constant. However,
we can proceed with calculating the conditional probabilities even without knowing the value of
α because relative proportions remain the same without normalization (e.g. relative proportions
of P (+b|E) and P (−b|E) remain the same without knowing the exact value of α = 1/P (E)).
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(ii) What are the hidden and evidence variable(s)?

The hidden variables are D,C,R, and the evidence variable is E.

(c) Using the probability expression from the previous part, we want to compute the query B given evidence
that the student enjoys the software. Assume the variable ordering is in alphabetical order.

(i) How many factors are there, and what are the dimensions of each factor?

Our expression is: P (B|+ e) = αP (+e)
∑

r,d,c P (d)P (c|d,+e)P (B|c)P (r|+ e)

= αP (+e)
∑

r P (r|+ e)
∑

d PP (d)
∑

c P (c|d,+e)(B|c)

Each conditional probability corresponds to an individual factor, so there are 5 factors total.
The factor for P (d) and P (r|+e) each have dimension 2×1, the factors for P (c|d,+e) and P (B|c)
each have dimension 2× 2, and the factor for P (+e) is a one-element vector.

(ii) Run the variable elimination algorithm to eliminate repeated computations for the expression
P (B|+ e).

All factors: P (D), P (+e), P (C|D,+e), P (B|C), P (R|+ e)

• Choose C: The relevant factors are P (C|D,+e), P (B|C). We sum out C to get f1(D,B) =∑
c P (C = c|D,+e)P (B|C = c).

Expression: P (B|+ e) = αP (+e)
∑

d,r P (D = d)P (R = r|+ e)× f1(D,B)

• Choose D: We sum out the relevant factors P (D) and f1(D,B) to get f2(B) =
∑

d f1(D =
d,B)P (d).

Expression: P (B|+ e) = αP (+e)
∑

r P (R = r|+ e)× f2(B)

• Choose R: We sum out the relevant factor P (R|+ e) to get f3(R) =
∑

r P (R = r|+ e).

Expression: P (B|+ e) = αP (+e)f3(R)× f2(B)

(iii) How does the resulting expression change if the variable ordering is instead in reverse alphabetical
order?

• Choose R: We sum out relevant factor P (R| + e) to get
∑

r P (R = r| + e) = 1. We can
discard this variable since it is irrelevant.

• Choose D: We sum out relevant factors P (D), P (C|D,+e) to get f2(C) =
∑

d P (C|D =
d,+e)× P (D = d).

Expression: P (B|+ e) = αP (+e)
∑

c P (B|c)× f2(C = c)

• Choose C: We sum out relevant factors P (B|c) and f2(C) to get f3(B) =
∑

c P (B|C =
c)× f2(C = c).

P (B|+ e) = αP (+e)f3(B)

(iv) How do the two orderings compare with respect to time and space complexity?
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When the terms were ordered in alphabetical order, the largest factor had 2 variables. When the
terms were ordered in reverse alphabetical order, the largest factor had 1 variable. Since the size
of the largest factor determines the space/time complexity, the second ordering performs better.

(v) Describe a heuristic that could be useful in determining a variable ordering to minimize the size
of the largest factor.

Potential ideas:

• Eliminate whichever variable minimizes the size of the next factor to be constructed.

• Eliminate the variable with the fewest dependent variables
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2 Sampling

(a) Compared to other sampling methods (rejection, likelihood weighting, Gibbs), what kind of information
can prior sampling not use (that other methods can)?

Other methods can compute probabilities with fixed evidence, while the network for prior sampling has
no evidence associated.

(b) How does reject sampling work on a high level, and what is its biggest/immediate weakness?

It generates samples from the given prior distribution, rejects all samples that do not match the evi-
dence, and then derives the probability (# times the desired value appears in the remaining samples).

Its biggest weakness is potential inefficiency when evidence is rare. Most samples would then be
rejected, so all this information would be thrown away despite being calculated.

The diagram below describes a person’s ice-cream eating habits based on the weather. The nodes Wi stand
for the weather on a day i, which can either be s (sunny) or r (rainy). The nodes Ii represent whether the
person ate ice-cream on day i, which can either be t (true) or f (false).

W1 P (W1)
s 0.6
r 0.4

I W P (I|W )
t s 0.9
f s 0.1
t r 0.2
f r 0.8

W2 W1 P (W2|W1)
s s 0.7
r s 0.3
s r 0.5
r r 0.5

Assume we generate the following six samples given the evidence I1 = t and I2 = f :

(W1, I1,W2, I2) = < s, t, r, f >,< r, t, r, f >,< s, t, r, f >,< s, t, s, f >,< s, t, s, f >,< r, t, s, f >

Using these samples, we will complete the following table:

(W1, I1,W2, I2) Count/N w Joint
s, t, s, f 2/6 0.09 0.03
s, t, r, f /6
r, t, s, f /6
r, t, r, f /6

(c) What is the weight of the sample (s, t, r, f) above? Recall that the weight given to a sample in likelihood
weighting is:

w =
∏

Evidence variables e

P (e|Parents(e)).

In this case, the evidence is I1 = t, I2 = f . The weight of the first sample is therefore

w = Pr(I1 = t|W1 = s) · Pr(I2 = f |W2 = r) = 0.9 · 0.8 = 0.72

4



15-281: AI: Representation and Problem Solving

Recitation 10

Fall 2019

November 15

(d) What is the estimate of P(s, t, r, f) given the samples?

The estimate of the joint probability is simply Count/N ∗ w = 2/6 ∗ 0.72 = 0.24.

(e) Compute the rest of the entries in the table. Use the estimated joint probabilities to estimate P (W2|I1 =
t, I2 = f).

(W1, I1,W2, I2) Count/N w Joint
s, t, s, f 2/6 0.09 0.03
s, t, r, f 2/6 0.72 0.24
r, t, s, f 1/6 0.02 0.003
r, t, r, f 1/6 0.16 0.027

To compute the probabilities, we sum out variables as usual:

P(W2 = r|I1 = t, I2 = f) = P(I1 = t,W2 = r, I2 = f) / P(I1 = t, I2 = f)

We sum over W1 using the rows from the table:

P (W2 = r, I1 = t, I2 = f) =
∑

w1
P (W1 = w1, I1 = t,W2 = r, I2 = f) = 0.24 + 0.027 = 0.267

Since all the rows in the table have I1 = t, I2 = f , the probability is just the sum of all the joint
probabilities.

P(I1 = t, I2 = f) = 0.03 + 0.24 + 0.003 + 0.027 = 0.3

So P(W2 = r|I1 = t, I2 = f) = 0.267 / 0.3 = 0.89.

(f) What is a weakness of likelihood weighing sampling? How does Gibbs sampling work, and how does it
address this limitation?

Likelihood weighing only conditions on upstream evidence (so evidence only influences the choice of
downstream variables).

Gibbs sampling starts with an arbitrary instantiation of a complete sample (consistent with evidence),
and then samples on one variable at a time, conditioned on all the rest, while keeping evidence consis-
tent. This way, both upstream and downstream variables condition on evidence.
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3 HMMs: Tracking a Jabberwock

You have been put in charge of a Jabberwock for your friend Lewis. The Jabberwock is kept in a large
tugley wood which is conveniently divided into an N × N grid. It wanders freely around the N2 possible
cells. At each time step t = 1, 2, 3, . . ., the Jabberwock is in some cell Xt ∈ {1, . . . , N}2, and it moves to
cell Xt+1 randomly as follows: with probability 1− ε, it chooses one of the (up to 4) valid neighboring cells
uniformly at random; with probability ε, it uses its magical powers to teleport to a random cell uniformly
at random among the N2 possibilities (it might teleport to the same cell). Suppose ε = 1

2 , N = 10 and that
the Jabberwock always starts in X1 = (1, 1).

(a) Compute the probability that the Jabberwock will be in X2 = (2, 1) at time step 2. What about
P (X2 = (4, 4))?

P (X2 = (2, 1)) = 1/2 · 1/2 + 1/2 · 1/100 = 0.255
P (X2 = (4, 4)) = 1/2 · 1/100 = 0.005

At each time step t, you don’t see Xt but see Et, which is the row that the Jabberwock is in; that is,
if Xt = (r, c), then Et = r. You still know that X1 = (1, 1).

(b) Suppose we see that E1 = 1, E2 = 2. Fill in the following table with the distribution over Xt after each
time step, taking into consideration the evidence. Your answer should be concise. Hint: you should
not need to do any heavy calculations.

t P (Xt | e1:t−1, X1 = (1, 1)) P (Xt | e1:t, X1 = (1, 1))
1

2

t P (Xt | e1:t−1, X1 = (1, 1)) P (Xt | e1:t, X1 = (1, 1))

1

X1 P (X1 | X1 = (1, 1))
(1, 1) 1

all other values 0

X1 P (X1 | e1, X1 = (1, 1))
(1, 1) 1

all other values 0

2

X2 P (X2 | e1, X1 = (1, 1))
(1, 2) 51/200
(2, 1) 51/200

all other values 1/200

X2 P (X2 | e1:2, X1 = (1, 1))
(2, 1) 51/60

(2, a) (∀a, a > 1) 1/60
all other values 0

You are a bit unsatisfied that you can’t pinpoint the Jabberwock exactly. But then you remembered
Lewis told you that the Jabberwock teleports only because it is frumious on that time step, and it
becomes frumious independently of anything else. Let us introduce a variable Ft ∈ {0, 1} to denote
whether it will teleport at time t. We want to to add these frumious variables to the HMM. Consider
the two candidates:

6



15-281: AI: Representation and Problem Solving

Recitation 10

Fall 2019

November 15

(A) (B)

(A) (B)
X1⊥X3|X2 X1⊥X3|X2

X1⊥E2|X2 X1⊥E2|X2

X1⊥F2|X2 X1⊥F2|X2

X1⊥E4|X2 X1⊥E4|X2

X1⊥F4|X2 X1⊥F4|X2

E3⊥F3|X3 E3⊥F3|X3

E1⊥F2|X2 E1⊥F2|X2

E1⊥F2|E2 E1⊥F2|E2

(c) For each model, circle the conditional independence assumptions above which are true in that model.

(A) (B)
X1⊥X3|X2 + X1⊥X3|X2 +
X1⊥E2|X2 + X1⊥E2|X2 +
X1⊥F2|X2 X1⊥F2|X2 +
X1⊥E4|X2 + X1⊥E4|X2 +
X1⊥F4|X2 + X1⊥F4|X2 +
E3⊥F3|X3 + E3⊥F3|X3 +
E1⊥F2|X2 E1⊥F2|X2 +
E1⊥F2|E2 E1⊥F2|E2

(d) Which Bayes net is more appropriate for the problem domain here, (A) or (B)? Justify your answer.

(A) because the choice of X depends on F in the problem description.
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For the following questions, your answers should be fully general for models of the structure shown
above, not specific to the teleporting Jabberwock.

(e) For (A), express P (Xt+1, e1:t+1, f1:t+1) in terms of P (Xt, e1:t, f1:t) and the conditional probability tables
used to define the network. Assume the E and F nodes are all observed.

P (xt+1, e1:t+1, f1:t+1) = P (et+1|xt+1)P (ft+1)
∑
xt

P (xt+1|xt, ft+1)P (xt, e1:t, f1:t).

We’re already provided with P (xt, e1:t, f1:t). To get P (xt + 1, e1:t, f1:t), we can sum over all xt and
multiply by P (xt+1 | xt, ft+1), the conditional probability table of xt+1.
Then, to get the joint probability P (xt + 1, e1:t+1, f1:t+1), we multiply the above quantity with the
emission probability (P (et+1 | xt+1)) and P (ft+1), the CPT of P (ft+1).

(f) For (B), express P (Xt+1, e1:t+1, f1:t+1) in terms of P (Xt, e1:t, f1:t) and the CPTs used to define the
network. Assume the E and F nodes are all observed.

P (xt+1, e1:t+1, f1:t+1) = P (et+1|xt+1)P (ft+1|xt+1)
∑
xt

P (xt+1|xt)P (xt, e1:t, f1:t).

Similar idea as above, except this time we multiply the joint probability by P (xt+1|xt), since xt+1 now
no longer depends on ft+1).

Suppose that we don’t actually observe the Fts.

(g) For (A), express P (Xt+1, e1:t+1) in terms of P (Xt, e1:t) and the CPTs used to define the network.

P (xt+1, e1:t+1) = P (et+1|xt+1)
∑
ft+1

P (ft+1)
∑
xt

P (xt+1|xt, ft+1)P (xt, e1:t).

(h) For (B), express P (Xt+1, e1:t+1) in terms of P (Xt, e1:t) and the CPTs used to define the network.

P (xt+1, e1:t+1) = P (et+1|xt+1)
∑
xt

P (xt+1|xt)P (xt, e1:t).

For (g) and (h), we essentially use the same logic as (e) and (f). However, we no longer need the Fts
in the joint probability - so for any probability values that are conditioned on an ft, we multiply by
P (ft) and sum over all possible ft values. If not (i.e., for graph (B)), we simply drop that term when
computing the joint probability.
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