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MDP Worksheet October 18

1
(a)

MDPs: Basic Conceptual Questions

In class, we learned that the Bellman Equations can be used to characterize optimal utility in MDPs.
For reference, recall that this equation is given as:

V*(s) = mgmxz T(s,a,s")[R(s,a,s") +~yV*(s')]

What do we call v in this equation? Why is it necessary? What happens as v grows larger? As it
grows smaller?

~v is referred to as the discount factor, and is usually € [0, 1]. We need it to be < 1 to guarantee that our
algorithms will converge (and to prevent against infinite rewards if our game lasts forever, for example)!
Also, intuitively, it makes sense to value immediate rewards more highly than rewards obtained at a
later time.

A smaller « indicates smaller “horizon,” or a shorter term focus. As 7 increases to 1 (no discount), we
begin to act as though rewards at any given point in time are equally valuable. As 7 decreases to 0,
we begin to only count our immediate rewards.

What are the key distinctions between the value iteration and policy iteration algorithms, and when
might you prefer one to the other?

Possible answers: policy iteration is focused on evaluating the policies themselves, while value iteration
evaluates states or state-action pairs and implicitly derives a policy from there.

Limitations of value iteration include: (1) each iteration takes O(|S|?|A|) time, which is a bit costly; (2)
values of many states do not change in one iteration, but the process has to continue as long as there is
change in some states; (3) sometimes the corresponding policy (extract the policy as if the current Vj
is V*) has already converged to optimal, but the values have not converged and therefore we have to
continue the value iteration process, which is a waste of time. One drawback to policy iteration is that
each of its iterations involves policy evaluation, which may itself be a protracted iterative computation
requiring multiple sweeps through the state set. Overall, policy iteration converges faster than value
iteration under certain conditions.

When does policy iteration end? Immediately after policy iteration ends (without performing additional
computation), do we have the values of the optimal policy?

Policy iteration ends when the policy converges, i.e., when m,e,, = o4 after running policy improve-
ment.

We do have the values for the optimal policy. Since we necessarily ran policy evaluation on the most
recent iteration of policy iteration, we have the value function V™4 corresponding to m,q. We know
that Tpew = Tord, implying that V7eld = V7new  Therefore, we have V™ which is the value function
corresponding to the optimal policy e -

What changes if during policy iteration, you only run one iteration of Bellman update instead of running
it until convergence? Do you still get an optimal policy?

Yes, you will still get an optimal policy. The key observation here is that this procedure is effectively
the same as value iteration, since value iteration involves one step of evaluation as well. In this case,
we update values based on our current best policy, and keep doing that until convergence of a policy!
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Recall that the equation for value iteration is:

Vir1(s) = mgxz T(s,a,s)[R(s,a,s") +yVi(s)]

And the equation for policy evaluation is:

V() = 3 Ts,m(s), ) [R(s,w(s), ) + AV (5)]

given some fixed policy 7 that we update in the policy improvement step, given by:

mir1(s) « arg maxZT(s7 a,s")[R(s,a,s") + vV, (s")]
a

which looks very similar to policy extraction done in value iteration.
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2 MDPs: Racing

Consider a modification of the racing robot car example seen in lecture. In this game, the car repeatedly
moves a random number of spaces that is equally likely to be 2, 3, or 4. The car can either Move or Stop if
the total number of spaces moved is less than 6.

If the total spaces moved is 6 or higher, the game automatically ends, and the car receives a reward of
0. When the car Stops, the reward is equal to the total spaces moved (up to 5), and the game ends. There

is no reward for the Move action.

Let’s formulate this problem as an MDP with the states {0, 2,3,4,5, Done}.

(a) What is the transition function for this MDP? (You should specify discrete values for specific state/action

inputs.)

T'(s, Stop, Done) = 1, for s # Done
T(0, Move,s') = & for s’ € {2,3,4}
T(2, Move,s") = % for s’ € {4,5, Done}
T(3, Move,5) = %

T(3, Move, Done) = 2

T(4, Move, Done) = 1

T(5, Move, Done) = 1

T(s,a,s’) =0 otherwise.

(b) What is the reward function for this MDP?

R(s, Stop, Done) = s,s <5
R(s,a,s") = 0 otherwise

(¢) Recall the value iteration update equation:

Vier(s) = max 3 (s, 0, 8)[R(s, a, ') + Vi (s')]

Perform value iteration for 4 iterations with v = 1.

States 0 2 3 4 5
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(d)

()

You should have noticed that value iteration converged above. What is the optimal policy?

States 0 2 3 4 5
ﬂ.*

States 0 2 3 4 5
" Move Move Stop Stop Stop

How would our results change with v = 0.17

By decreasing «, we focus more and more on immediate rewards. This effectively makes our algorithm
more greedy, valuing short-term rewards more than long-term ones.

For this game, with a discount factor of 0.1, value iteration converges in fewer iterations, but upon a
different policy (Move, Stop, Stop, Stop, Stop). For state 2, the algorithm preferred the short-term
reward of Stopping over the long-term reward of Moving.

In the most extreme case with v = 0, the values converge immediately and yield an optimal policy of
Stop for all states other than state 0, and either Move or Stop at state 0 (because all actions at state
0 lead to an expected utility of 0).

Now recall the policy evaluation and policy improvement equations, which together make up policy
iteration. Bellman Equation for policy evaluation:

Via(s) =Y T(s,m(s),s")[R(s,m(s),s') + 7V (s)]

Policy improvement:

Tnew(S) < argmaXZT(s, a,s")[R(s,a,s") + VT (s")]
a ’

Perform two iterations of policy iteration for one step of this MDP, starting from the fixed policy below.
Use the initial v = 1.

States 0 2 3 4 5
0 Move Stop Move Stop Move
Vo

1

v

Uy
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States 0 2 3 4 5
T Move Stop Move Stop Move
Voo 0 0 0 0 0
Vi 0 2 0 4 0
Voo 2 2 0 4 0
Vo 2 2 0 4 0
m Move Stop Stop Stop Stop
Vot 0 0 0 0 0
vt 0 2 3 4 5
Vo 3 2 3 4 5
Vo 3 2 3 4 5
o Move Move Stop Stop Stop

Side note: above when evaluating 7y, we started policy evaluation off with all Os again - this is called a
cold start (terminology not super important). We also could have started off instead with the optimal
values we’d converged upon last round of policy evaluation (V5™), which often converge upon the
optimal values for 7 faster.
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