
Warm-up

• The regions below visually enclose the set of models that satisfy the
respective sentence 𝛾 or 𝛿. For which of the following diagrams
does 𝛾 entail 𝛿. Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)

Warm-up

• The regions below visually enclose the set of models that satisfy the
respective sentence 𝛾 or 𝛿. For which of the following diagrams
does 𝛾 entail 𝛿. Select all that apply.

γ δ γ δ δγ

γ

δ

δ

γ

A) B) C)

D) E)

𝛾 ⊨ 𝛿: iff in every world where 𝛾 is true, 𝛿 is also true

AI: Representation and Problem Solving
Boolean Satisfiability Problem (SAT)

& Logical Agents

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Announcements

• Midterm 1 Exam

 Tue 10/1, in class

• Assignments:

 HW4

• Due Tue 9/24, 10 pm

 P2: Logic and Planning

• Out today

• Due Sat 10/5, 10 pm

Learning Objectives

• Describe the definition of (Boolean) Satisfiability Problem (SAT)

• Describe the definition of Conjunctive Normal Form (CNF)

• Describe the following algorithms for solving SAT
• DPLL, CDCL, WalkSAT, GSAT

• Determine whether a sentence is satisfiable

• Describe Successor-State Axiom

• Describe and implement SATPlan (Planning as Satisfiability)

• (Hybrid Agent)

Logical Agent Vocab: Recap
• Symbol: Variable that can be true or false

• Model: Complete assignment of symbols to True/False

• Operators:  A (not), A  B (conjunction), A  B (disjunction), A B (implication), A
B (biconditional)

• Sentence: A logical statement composed of logic symbols and operators

• KB: Collection of sentences representing facts and rules we know about the world

• Query: Sentence we want to know if it is provably True, provably False, or unsure.

Logical Agent Vocab: Recap
• Entail

• Does sentence1 entail sentence2?

• Input: sentence1, sentence2

• Output: True if each model that satisfies sentence1 must also satisfy sentence2;
False otherwise

• "If I know 1 holds, then I know 2 holds"

• Satisfy

• Does model satisfy sentence?

• Input: model, sentence

• Output: True if this sentence is true in this model; False otherwise

• "Does this particular state of the world work?”

(Boolean) Satisfiability Problem (SAT)

• Satisfiable

• Is sentence satisfiable?

• Input: sentence

• Output: True if at least one model satisfies sentence

• "Is it possible to make this sentence true?”

• SAT problem is the problem of determining the satisfiability of a sentence

• SAT is a typical problem for logical agents

• SAT is the first problem proved to be NP-complete

• If satisfiable, we often want to know what that model is

SAT and Entailment

• A sentence is satisfiable if it is true in at least one world

• Suppose we have a hyper-efficient SAT solver; how can we use it to
test entailment?
• Suppose  |= 
• Then   is true in all worlds
• Hence ( ) is false in all worlds
• Hence    is false in all worlds, i.e., unsatisfiable

• More generally, to prove a sentence is valid (i.e., true in all models),
introduce the negated claim and test for unsatisfiability; also known
as reductio ad absurdum (reduction to absurdity)

SAT and CSPs

• SAT problems are essentially CSPs with Boolean variables

• Can apply backtracking based algorithms

• Can apply local search algorithms

• Naïve way to solve SAT: Truth table enumeration

• Efficient SAT solvers operate on conjunctive normal form

• Often based on backtracking and local search

Propositional Logical Vocab: Recap
• Literal

• Atomic sentence: True, False, Symbol, Symbol

• Clause

• Disjunction of literals: 𝐴 ∨ 𝐵 ∨ ¬𝐶

• Definite clause

• Disjunction of literals, exactly one is positive

• ¬𝐴 ∨ 𝐵 ∨ ¬𝐶

• Horn clause

• Disjunction of literals, at most one is positive

• All definite clauses are Horn clauses

Conjunctive Normal Form (CNF)

• Every sentence can be expressed as a conjunction of clauses

• Each clause is a disjunction of literals

• Each literal is a symbol or a negated symbol

• We can convert a sentence to CNF through a sequence of standard
transformations

Conjunctive Normal Form (CNF)
• Original sentence:

• A  (B  C)

• Biconditional Elimination: Replace biconditional by two implications

• A  ((B  C)  (C  B))

• Implication Elimination: Replace   by  v 

• A v ((B v C)  (C v B))

• Distribution: Distribute v over , i.e., replace  v (  𝛾) by ( v )  ( v 𝛾)

• (A v B v C)  (A v C v B)

Conjunctive Normal Form (CNF)

• Original sentence:

• ((A v B) v C)  (C  A)

• De Morgan’s Law: Replace ( v ) by , and (  ) by  v 

• ((A  B) v C)  (C  A)

• Distribution: Distribute v over , i.e., replace  v (  𝛾) by ( v )  ( v 𝛾)

• (A v C)  (B v C)  (C  A)

Other Logical Equivalences

DPLL Algorithm
• DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

• Essentially a backtracking search over models with several tricks:

• Early termination: stop if

• all clauses are satisfied; e.g., (A  B)  (A  C) is satisfied by {A=true}

• any clause is falsified; e.g., (A  B)  (A  C) is satisfied by {A=false, B=false}

Stop when a conflict is found. Similar to backtracking algorithm for general CSPs.

SAT solver can stop with partial models; no need to assign all variables (can
assign arbitrarily if a complete model is needed).

DPLL Algorithm
• DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

• Essentially a backtracking search over models with several tricks:

• Early termination

• Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

• E.g., A is pure and positive in (A  B)  (A  C)  (C  B) so set it to true

Claim: If a sentence has a model to satisfy it, then it has a model in which the
pure symbols are assigned values that make their literals true. Why?

W.l.o.g., assume symbol 𝐴 shows up in all clauses as 𝐴. Assume there is a
model satisfies the sentence with 𝐴=false. Then construct a new model
with 𝐴=true and everything else the same. Since there are no opposite sign
literals, making 𝐴=true that could make any clause be false.

DPLL Algorithm
• DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

• Essentially a backtracking search over models with several tricks:

• Early termination

• Pure symbols: if all occurrences of a symbol in as-yet-unsatisfied clauses have the
same sign, then give the symbol that value

• E.g., A is pure and positive in (A  B)  (A  C)  (C  B) so set it to true

Note: In determining the purity of a symbol, the algorithm can ignore clauses
that are already known to be true in the model constructed so far

DPLL Algorithm
• DPLL (Davis-Putnam-Logemann-Loveland) is the core of modern SAT solvers

• Essentially a backtracking search over models with several tricks:

• Early termination

• Pure symbols

• Unit clauses: A unit clause is a clause in which all literals but one are already
assigned false by the model (i.e., left with a single literal that can potentially
satisfy the clause). Set the remaining symbol of a unit clause to satisfy it.

• E.g., if A=false and the sentence (in CNF) has a clause (A  B), then set B true

• Unit propagation: Assigning values to the symbol in a unit clause can lead to
new unit clauses. Iteratively find unit clauses until no more remains.

Similar to Generalized Forward Checking (nFC0) for general CSPs

Similar to Constraint Propagation for general CSPs

function DPLL(clauses, symbols, model) returns true or false
if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false

P, value ←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})

P, value ←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols–P, model∪{P=value})

P ← First(symbols)
rest ← Rest(symbols)

return or(DPLL(clauses, rest, model∪{P=true}),
DPLL(clauses, rest, model∪{P=false}))

DPLL Algorithm

Early termination

Essentially backtracking

POLL Problem

Is a sentences in CNF with the following clauses satisfiable?

A. Yes
B. No

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Pure symbol 𝑥1 =true
Pure symbol 𝑥2 =true
Pure symbol 𝑥3 =false
Pure symbol 𝑥4 =true
Pure symbol 𝑥11 =true

New pure symbol 𝑥8=true
New pure symbol 𝑥7=true
All constraints satisfied

POLL Problem

Is a sentences in CNF with the following clauses satisfiable?

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

DPLL Algorithm

Clauses:
¬𝑎 ∨ 𝑏 ∨ 𝑐
𝑎 ∨ 𝑐 ∨ 𝑑
𝑎 ∨ 𝑐 ∨ ¬𝑑
𝑎 ∨ ¬𝑐 ∨ 𝑑
𝑎 ∨ ¬𝑐 ∨ ¬𝑑
¬𝑏 ∨ ¬𝑐 ∨ 𝑑
¬𝑎 ∨ 𝑏 ∨ ¬𝑐
¬𝑎 ∨ ¬𝑏 ∨ 𝑐

Assign 𝑎 = 𝑡𝑟𝑢𝑒

DPLL Algorithm

Clauses:
¬𝑎 ∨ 𝑏 ∨ 𝑐
𝑎 ∨ 𝑐 ∨ 𝑑
𝑎 ∨ 𝑐 ∨ ¬𝑑
𝑎 ∨ ¬𝑐 ∨ 𝑑
𝑎 ∨ ¬𝑐 ∨ ¬𝑑
¬𝑏 ∨ ¬𝑐 ∨ 𝑑
¬𝑎 ∨ 𝑏 ∨ ¬𝑐
¬𝑎 ∨ ¬𝑏 ∨ 𝑐

Assign 𝑎 = 𝑡𝑟𝑢𝑒

Assign 𝑏 = 𝑡𝑟𝑢𝑒

DPLL Algorithm

Clauses:
¬𝑎 ∨ 𝑏 ∨ 𝑐
𝑎 ∨ 𝑐 ∨ 𝑑
𝑎 ∨ 𝑐 ∨ ¬𝑑
𝑎 ∨ ¬𝑐 ∨ 𝑑
𝑎 ∨ ¬𝑐 ∨ ¬𝑑
¬𝑏 ∨ ¬𝑐 ∨ 𝑑
¬𝑎 ∨ 𝑏 ∨ ¬𝑐
¬𝑎 ∨ ¬𝑏 ∨ 𝑐

Assign 𝑎 = 𝑡𝑟𝑢𝑒

Assign 𝑏 = 𝑡𝑟𝑢𝑒

Find unit clause ¬𝑎 ∨ ¬𝑏 ∨ 𝑐, so 𝑐 = 𝑡𝑟𝑢𝑒

DPLL Algorithm

Clauses:
¬𝑎 ∨ 𝑏 ∨ 𝑐
𝑎 ∨ 𝑐 ∨ 𝑑
𝑎 ∨ 𝑐 ∨ ¬𝑑
𝑎 ∨ ¬𝑐 ∨ 𝑑
𝑎 ∨ ¬𝑐 ∨ ¬𝑑
¬𝑏 ∨ ¬𝑐 ∨ 𝑑
¬𝑎 ∨ 𝑏 ∨ ¬𝑐
¬𝑎 ∨ ¬𝑏 ∨ 𝑐

Assign 𝑎 = 𝑡𝑟𝑢𝑒

Assign 𝑏 = 𝑡𝑟𝑢𝑒

Find unit clause ¬𝑎 ∨ ¬𝑏 ∨ 𝑐, so 𝑐 = 𝑡𝑟𝑢𝑒

Find unit clause ¬𝑏 ∨ ¬𝑐 ∨ 𝑑, so 𝑑 = 𝑡𝑟𝑢𝑒

Backjumping

• Backjumping is a technique in backtracking algorithms

• Go up more than one level in the search tree when backtrack

https://en.wikipedia.org/wiki/Backjumping

https://en.wikipedia.org/wiki/Backjumping

Implication Graph

• A directed graph 𝐺 = (𝑉, 𝐸) composed of vertex set 𝑉 and directed
edge set 𝐸. Each vertex in 𝑉 represents the truth status of a Boolean
literal, and each directed edge from vertex 𝑢 to vertex 𝑣 represents
the implication "If the literal 𝑢 is true then the literal 𝑣 is also true".

Example: Given a clause (A  B), 𝐴=false implies 𝐵=true

¬𝐴

𝐵

https://en.wikipedia.org/wiki/Implication_graph

https://en.wikipedia.org/wiki/Implication_graph

Conflict Driven Clause Learning (CDCL)

DPLL CDCL

• Use implication graph

• Use non-chronological backjumping

Conflict Driven Clause Learning (CDCL)

1. Select a variable and assign True or False
2. Apply unit propagation to build the implication graph
3. If there is any conflict

a) Find the cut in the implication graph that led to the conflict
b) Derive a new clause which is the negation of the assignments that led to

the conflict
c) Backjump to the appropriate decision level, where the first-assigned

variable involved in the conflict was assigned
4. Otherwise continue from step 1 until all variable values are assigned

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

Conflict Driven Clause Learning (CDCL)

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Conflict Driven Clause Learning (CDCL)

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Build the implication graph

Conflict Driven Clause Learning (CDCL)

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Conflict Driven Clause Learning (CDCL)

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Conflict Driven Clause Learning (CDCL)
𝑥1 ∨ 𝑥4

𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Conflict Driven Clause Learning (CDCL)
𝑥1 ∨ 𝑥4

𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

There is a conflict!

Conflict Driven Clause Learning (CDCL)
𝑥1 ∨ 𝑥4

𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12

Find the cut and its corresponding literals: 𝑥3, 𝑥7, ¬𝑥8
Derive a new clause ¬𝑥3 ∨ ¬𝑥7 ∨ 𝑥8. Why?

If 𝑥3 ∧ 𝑥7 ∧ ¬𝑥8, then there will be a conflict

Conflict Driven Clause Learning (CDCL)

Backjump to the level where the first-
assigned variable involved in the conflict
was assigned.

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12
¬𝑥3 ∨ ¬𝑥7 ∨ 𝑥8

Conflict Driven Clause Learning (CDCL)

Backtrack to the level where the “problem” is
instead of merely trying to fix the “symptom”

Continue Unit propagation.

𝑥1 ∨ 𝑥4
𝑥1 ∨ ¬𝑥3 ∨ ¬𝑥8
𝑥1 ∨ 𝑥8 ∨ 𝑥12
𝑥2 ∨ 𝑥11

¬𝑥7 ∨ ¬𝑥3 ∨ 𝑥9
¬𝑥7 ∨ 𝑥8 ∨ ¬𝑥9
𝑥7 ∨ 𝑥8 ∨ ¬𝑥10
𝑥7 ∨ 𝑥10 ∨ ¬𝑥12
¬𝑥3 ∨ ¬𝑥7 ∨ 𝑥8

Conflict Driven Clause Learning (CDCL)

1. Select a variable and assign True or False
2. Apply unit propagation to build the implication graph
3. If there is any conflict

a) Find the cut in the implication graph that led to the conflict
b) Derive a new clause which is the negation of the assignments that led to

the conflict
c) Backjump to the appropriate decision level, where the first-assigned

variable involved in the conflict was assigned
4. Otherwise continue from step 1 until all variable values are assigned

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

Similar ideas can be applied to general CSPs

https://en.wikipedia.org/wiki/Conflict-driven_clause_learning

Local Search Algorithms for SAT

• WALK-SAT
• Randomly choose an unsatisfied clause

• With probability p, flip a randomly selected symbol in the clause

• Otherwise, flip a symbol in the clause that maximizes the # of satisfied clauses

WALKSAT
function WALKSAT(clauses, p, max_flips) returns a model or failure

inputs: clauses, a set of clauses

p, the probability of choosing to do a random walk, typically around 0.5

max_flips, number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses

for i = 1 to max_flips do

if model satisfies clauses then return model

clause ←a randomly selected clause from clauses that is false in model

with probability p flip the value in model of
a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the # of satisfied clauses

return failure
42

Local Search Algorithms for SAT

• WALK-SAT
• Randomly choose an unsatisfied clause

• With probability p, flip a randomly selected symbol in the clause

• Otherwise, flip a symbol in the clause that maximizes the # of satisfied clauses

• GSAT [Selman, Levesque, Mitchell AAAI-92]
• Similar to hill climbing but with random restarts and allows for

downhill/sideway moves if no better moves available

GSAT
function GSAT(sentence, max_restarts, max_climbs) returns a model or failure

for i = 1 to max_restarts do

model ← a random assignment of true/false to the symbols in clauses

for j = 1 to max_climbs do

if model satisfies sentence then return model

model ← randomly choose one of the best successors

return failure

44

2000

1600

1200

800

400

Avg. total flips

100 200

50 variables, 215 3SAT clauses

max-climbs

Greediness is not essential as long
as climbs and sideways moves are
preferred over downward moves.

Phase Transition of SAT

SAT Applications

Evolution of SAT Solvers

Agent based on Propositional Logic

Agent

Sensors

Actuators

Environment

Percepts

Actions

Knowledge Base

Inference

Planning as Satisfiability (SATPlan)

• Given a hyper-efficient SAT solver, can we use it to make plans for an
agent so that it is guaranteed to achieve certain goals?

• For fully observable, deterministic case: Yes, planning problem is
solvable iff there is some satisfying assignment for actions etc. (No
sensor needed due to full observability; KB does not grow)

How can Pacman eat all food given that the ghost will
move South, then E, then N, then stop there?

Wall

Planning as Satisfiability (SATPlan)

Use symbols to represent the problem, including aspects of the
world that do not change over time (called “atemporal

variables”), e.g., 𝑊𝑎𝑙𝑙𝑖𝑗
𝐸 , and aspects that change over time

(called as “fluent”, or “state variables”), e.g., location 𝐿𝑖𝑗
𝑡 and

action 𝑁𝑡 , 𝑆𝑡 , 𝐸𝑡 ,𝑊𝑡, ∀𝑡 = 1, 2, … , 𝑇
1. Set up KB: Write down all the sentences in KB
2. Solve SAT: Find a model that satisfy all these sentences

How can Pacman eat all food given that the ghost will move South, then E, then N,
then stop there?

Wall

What should be the value of T?

Recall Iterative Deepening. Gradually increase 𝑇 if a
small value returns no solution

Planning as Satisfiability (SATPlan)

𝑇𝑚𝑎𝑥: Max length of planning horizon

𝑇
𝑇)

𝑇 is the length of planning horizon. Gradually increase.

Set up the KB

Run SAT solver

Planning as Satisfiability (SATPlan)

• How to set up the KB? KB often includes sentences describing

Wall

1 2

2

1

- Initial state

- Domain constraints

e.g., 𝐿11
0 , 𝐺ℎ𝑜𝑠𝑡12

0 , ¬𝑊𝑎𝑙𝑙12
𝑆 , 𝑊𝑎𝑙𝑙12

𝐸 , …

𝑖

𝑗e.g., Pacman cannot be at two locations at the same time
¬ 𝐿11

1 ∧ 𝐿12
1 ∧ ¬ 𝐿11

1 ∧ 𝐿21
1 ∧ ¬ 𝐿11

1 ∧ 𝐿212
1 ∧ ¬ 𝐿12

1 ∧ 𝐿21
1 …

Planning as Satisfiability (SATPlan)

• How to set up the KB? KB often includes sentences describing Wall

1 2

2

1

- Transition model sentences up to time T
Write down how each fluent at each time gets its
value based on successor-state axiom:

𝑖

𝑗

e.g., If “Stop” action is allowed, for 𝐿12
1 , Pacman was at an

adjacent square at time 0 and moved to (1,2) or was at (1,2) and
nothing causes to change its location

𝐿12
1 ⟺ 𝐿11

0 ∧ 𝑁0 ∧ ¬𝑊𝑎𝑙𝑙12
𝑆 ∧ ⋯ ∨⋯

∨ (𝐿12
0 ∧ ¬ 𝑆0 ∧ ¬𝑊𝑎𝑙𝑙12

𝑆 ∨ ⋯)

Planning as Satisfiability (SATPlan)

• How to set up the KB? KB often includes sentences describing Wall

1 2

2

1

- Goal is achieved at time T

𝑖

𝑗e.g., no food left at T
¬𝐹𝑜𝑜𝑑11

𝑇 ∧ ¬𝐹𝑜𝑜𝑑12
𝑇 ∧ ¬𝐹𝑜𝑜𝑑21

𝑇 ∧ ¬𝐹𝑜𝑜𝑑22
𝑇

Wumpus World

• The world is not fully observable
from the beginning

• KB consists of
• Facts
• Rules
• Percept and Actions

• Keep adding sentences to the KB
with new percepts and actions

• At any time step, we can Ask the
KB about the current state, e.g.,
whether a square is safe

𝐵𝑖𝑗 = breeze felt; 𝑆𝑖𝑗 = stench smelt

𝑃𝑖𝑗 = pit here; 𝑊𝑖𝑗 = wumpus here; 𝐺 = gold

Hybrid Agent

• Plan actions by combining search and logical inference

• Maintain and update a KB as well as a current plan

• Construct a plan based on a decreasing priority of goals

• In Wumpus world
• Ask KB to work out which squares are safe and which have yet to be visited

• If there is glitter, construct a plan to grad the gold and go back safely

• If there is no current plan, use A* search to plan a route that only goes
through safe squares to the closest unvisited safe square

• If no such safe squares to explore, ask questions to determine whether to
shoot at one of the possible wumpus locations

Summary

• Many problems can be reduced to SAT

• Efficient SAT solvers operates on CNF and uses ideas in solving CSPs
such as backtracking and local search

• Can frame a planning problem as a satisfiability problem

Learning Objectives

• Describe the definition of (Boolean) Satisfiability Problem (SAT)

• Describe the definition of Conjunctive Normal Form (CNF)

• Describe the following algorithms for solving SAT
• DPLL, CDCL, WalkSAT, GSAT

• Determine whether a sentence is satisfiable

• Describe Successor-State Axiom

• Describe and implement SATPlan (Planning as Satisfiability)

• (Hybrid Agent)

