
Warm-up:
What is the relationship between number of constraints and number of
possible solutions?

In other words, as the number of the constraints increases,

does the number of possible solutions:

A) Increase

B) Decrease

C) Stay the same

Announcements
Midterm 1 Exam

▪ Tue 10/1, in class

Assignments:

▪ HW3

▪ Due tonight, 10 pm

▪ HW4

▪ Due Tue 9/24, 10 pm

▪ P2: Logic and Planning

▪ Out Thu 9/19

▪ Due Thu 10/3, 10 pm

Recitation and feedback survey on Piazza

▪ Due tomorrow, 10 pm

Sat 10/5, 10 pm

AI: Representation and Problem Solving

Propositional Logic

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU AI, http://ai.berkeley.edu

Logical Agents
Logical agents and environments

Agent

Sensors

Actuators

Environment

Percepts

Actions

?
Knowledge Base

Inference

Wumpus World
Logical Reasoning as a CSP

▪ Bij = breeze felt

▪ Sij = stench smelt

▪ Pij = pit here

▪ Wij = wumpus here

▪ G = gold

http://thiagodnf.github.io/wumpus-world-simulator/

http://thiagodnf.github.io/wumpus-world-simulator/

A Knowledge-based Agent

function KB-AGENT(percept) returns an action

persistent: KB, a knowledge base

t, an integer, initially 0

TELL(KB, PROCESS-PERCEPT(percept, t))

action ← ASK(KB, PROCESS-QUERY(t))

TELL(KB, PROCESS-RESULT(action, t))

t←t+1

return action

Logical Agents
So what do we TELL our knowledge base (KB)?
▪ Facts (sentences)

▪ The grass is green

▪ The sky is blue

▪ Rules (sentences)

▪ Eating too much candy makes you sick

▪ When you’re sick you don’t go to school

▪ Percepts and Actions (sentences)

▪ Pat ate too much candy today

What happens when we ASK the agent?
▪ Inference – new sentences created from old

▪ Pat is not going to school today

Logical Agents

Sherlock Agent

▪ Really good knowledge base

▪ Evidence

▪ Understanding of how the world works
(physics, chemistry, sociology)

▪ Really good inference

▪ Skills of deduction

▪ “It’s elementary my dear Watson”

Dr. Strange?
Alan Turing?

Kahn?

Worlds
What are we trying to figure out?

▪ Who, what, when, where, why

▪ Time: past, present, future

▪ Actions, strategy

▪ Partially observable? Ghosts, Walls

Which world are we living in?

Models

How do we represent possible worlds with models and knowledge bases?

How do we then do inference with these representations?

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Nothing in [1,1]
▪ Breeze in [2,1]

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼1:

▪ No pit in [1,2]

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼2:

▪ No pit in [2,2]

Logic Language
Natural language?

Propositional logic
▪ Syntax: P  (Q  R); X1  (Raining  Sunny)

▪ Possible world: {P=true, Q=true, R=false, S=true} or 1101

▪ Semantics:    is true in a world iff is  true and  is true (etc.)

First-order logic
▪ Syntax: x y P(x,y)  Q(Joe,f(x))  f(x)=f(y)

▪ Possible world: Objects o1, o2, o3; P holds for <o1,o2>; Q holds for <o3>; f(o1)=o1;
Joe=o3; etc.

▪ Semantics: () is true in a world if =oj and  holds for oj; etc.

Propositional Logic

Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐴 ∨ 𝐶 are true,

what do we know about 𝐴 ∨ 𝐶?

i. 𝐴 ∨ 𝐶 is guaranteed to be true

ii. 𝐴 ∨ 𝐶 is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about 𝐴 ∨ 𝐶

Piazza Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true,

what do we know about 𝐴?

i. 𝐴 is guaranteed to be true

ii. 𝐴 is guaranteed to be false

iii. We don’t have enough information to say anything
definitive about 𝐴

Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐴 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true

Piazza Poll 1
If we know that 𝐴 ∨ 𝐵 and ¬𝐴 ∨ 𝐶 are true, what do we know about 𝐴 ∨ 𝐶?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true

Piazza Poll 2
If we know that 𝐴 ∨ 𝐵 and ¬𝐵 ∨ 𝐶 are true, what do we know about 𝐴?

𝐴 𝐵 𝐶 𝐴 ∨ 𝐵 ¬𝐵 ∨ 𝐶 𝐴 ∨ 𝐶

false false false false true false

false false true false true true

false true false true false false

false true true true true true

true false false true true true

true false true true true true

true true false true false true

true true true true true true

Propositional Logic
Symbol:

▪ Variable that can be true or false

▪ We’ll try to use capital letters, e.g. A, B, P1,2

▪ Often include True and False

Operators:

▪  A: not A

▪ A  B: A and B (conjunction)

▪ A  B: A or B (disjunction) Note: this is not an “exclusive or”

▪ A  B: A implies B (implication). If A then B

▪ A  B: A if and only if B (biconditional)

Sentences

Propositional Logic Syntax
Given: a set of proposition symbols {X1, X2, …, Xn}

▪ (we often add True and False for convenience)

Xi is a sentence

If  is a sentence then  is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then    is a sentence

If  and  are sentences then   is a sentence

If  and  are sentences then   is a sentence

And p.s. there are no other sentences!

𝛂 ∨ 𝛃 is inclusive or, not exclusive

Notes on Operators

Truth Tables
𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂 𝛃 𝛂  𝛃

F F F

F T F

T F F

T T T

𝛂 𝛃 𝛂  𝛃

F F F

F T T

T F T

T T T

𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to ¬𝛂 ∨ 𝛃

▪ Says who?

Notes on Operators

Truth Tables
𝛂⇒ 𝛃 is equivalent to ¬𝛂 ∨ 𝛃

𝛂 𝛃 𝛂⇒ 𝛃 ¬𝛂 ¬𝛂 ∨ 𝛃

F F T T T

F T T T T

T F F F F

T T T F T

𝛂 ∨ 𝛃 is inclusive or, not exclusive

𝛂⇒ 𝛃 is equivalent to ¬𝛂 ∨ 𝛃

▪ Says who?

𝛂⇔ 𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)

▪ Prove it!

Notes on Operators

Truth Tables
𝛂⇔ 𝛃 is equivalent to (𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)

𝛂 𝛃 𝛂⇔ 𝛃 𝛂⇒ 𝛃 𝛃⇒ 𝛂 (𝛂⇒𝛃) ∧ (𝛃⇒𝛂)

F F T T T T

F T F T F F

T F F F T F

T T T T T T

Equivalence: it’s true in all models. Expressed as a logical sentence:

(𝛂⇔ 𝛃) ⇔ [(𝛂⇒ 𝛃) ∧ (𝛃⇒ 𝛂)]

Propositional Logical Vocab
Literal

▪ Atomic sentence: True, False, Symbol, Symbol

Clause

▪ Disjunction of literals: 𝐴 ∨ 𝐵 ∨ ¬𝐶

Definite clause

▪ Disjunction of literals, exactly one is positive

▪¬𝐴 ∨ 𝐵 ∨ ¬𝐶

Horn clause

▪ Disjunction of literals, at most one is positive

▪ All definite clauses are Horn clauses

Vocab Alert!

Propositional Logic

function PL-TRUE?(,model) returns true or false

if  is a symbol then return Lookup(, model)

if Op() =  then return not(PL-TRUE?(Arg1(),model))

if Op() =  then return and(PL-TRUE?(Arg1(),model),

PL-TRUE?(Arg2(),model))

etc.

(Sometimes called “recursion over syntax”)

Check if sentence is true in given model

In other words, does the model satisfy the sentence?

Warm-up:
What is the relationship between number of constraints and number of
possible solutions?

In other words, as the number of the constraints increases,

does the number of possible solutions:

A) Increase

B) Decrease

C) Stay the same

Where is the knowledge in our CSPs?

Piazza Poll 3
What is the relationship between the size of the knowledge base and
number of satisfiable models?

In other words, as the number of the knowledge base rules increases,

does the number of satisfiable models:

A) Increase

B) Decrease

C) Stay the same

Piazza Poll 3
What is the relationship between the size of the knowledge base and
number of satisfiable models?

In other words, as the number of the knowledge base rules increases,

does the number of satisfiable models:

A) Increase

B) Decrease

C) Stay the same

Sentences as Constraints
Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models

Sentences as Constraints
Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models

Sentences as Constraints
Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

KB: [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

KB: R, [(P ∧ ¬Q) ∨ (Q ∧ ¬P)] ⇒ R

P Q R

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

Possible
Models

Sherlock Entailment
“When you have eliminated the impossible, whatever remains,
however improbable, must be the truth” – Sherlock Holmes via
Sir Arthur Conan Doyle

(Not quite)

▪ Knowledge base and inference
allow us to remove impossible
models, helping us to see what is
true in all of the remaining
models

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Nothing in [1,1]
▪ Breeze in [2,1]

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼1:

▪ No pit in [1,2]

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼2:

▪ No pit in [2,2]

Entailment

Entailment:  |=  (“ entails ” or “ follows from ”) iff in every world
where  is true,  is also true

▪ I.e., the -worlds are a subset of the -worlds [models()  models()]

Usually we want to know if KB |= query
▪ models(KB)  models(query)

▪ In other words

▪ KB removes all impossible models (any model where KB is false)

▪ If  is true in all of these remaining models, we conclude that must be true

Entailment and implication are very much related
▪ However, entailment relates two sentences, while an implication is itself a sentence

(usually derived via inference to show entailment)

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Nothing in [1,1]
▪ Breeze in [2,1]

Entailment: KB |= 𝛼

“KB entails 𝛼” iff in every world
where KB is true, 𝛼 is also true

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼1:

▪ No pit in [1,2]

Entailment: KB |= 𝛼

“KB entails 𝛼” iff in every world
where KB is true, 𝛼 is also true

Wumpus World
Possible Models

▪ P1,2 P2,2 P3,1

▪ Knowledge base

▪ Breeze ⇒ Adjacent Pit
▪ Nothing in [1,1]
▪ Breeze in [2,1]

▪ Query 𝛼2:

▪ No pit in [2,2]

Entailment: KB |= 𝛼

“KB entails 𝛼” iff in every world
where KB is true, 𝛼 is also true

Propositional Logic Models

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Piazza Poll 4
Does the KB entail query C?

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1

BC 1 1 0 1 1 1 0 1

ABC 1 1 1 1 0 1 1 1

C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment:  |= 

“ entails ” iff in every world
where  is true,  is also true

Piazza Poll 4
Does the KB entail query C?

A 0 0 0 0 1 1 1 1
B 0 0 1 1 0 0 1 1
C 0 1 0 1 0 1 0 1

A 0 0 0 0 1 1 1 1

BC 1 1 0 1 1 1 0 1

ABC 1 1 1 1 0 1 1 1

C 0 1 0 1 0 1 0 1

All Possible Models

Model Symbols

Knowledge Base

Query

Entailment:  |= 

“ entails ” iff in every world
where  is true,  is also true

Entailment
How do we implement a logical agent that proves entailment?

▪ Logic language

▪ Propositional logic

▪ First order logic

▪ Knowledge Base

▪ Add known logical rules and facts

▪ Inference algorithms

▪ Theorem proving

▪Model checking

Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false

Simple Model Checking, contd.

Same recursion as backtracking P1=true P1=false

P2=true P2=false

Pn=falsePn=true

1
1

1
1

1
…

1

0
0

0
0

…
0

KB?
α?

Simple Model Checking
function TT-ENTAILS?(KB, α) returns true or false

return TT-CHECK-ALL(KB, α, symbols(KB) U symbols(α),{})

function TT-CHECK-ALL(KB, α, symbols,model) returns true or false

if empty?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)

else return true

else

P ← first(symbols)

rest ← rest(symbols)

return and (TT-CHECK-ALL(KB, α, rest, model ∪ {P = true})

TT-CHECK-ALL(KB, α, rest, model ∪ {P = false }))

Simple Model Checking, contd.

Same recursion as backtracking

O(2n) time, linear space

Can we do better?

P1=true P1=false

P2=true P2=false

Pn=falsePn=true

1
1

1
1

1
…

1

0
0

0
0

…
0

KB?
α?

Inference: Proofs
A proof is a demonstration of entailment between  and 

Method 1: model-checking
▪ For every possible world, if  is true make sure that is  true too

▪ OK for propositional logic (finitely many worlds); not easy for first-order logic

Method 2: theorem-proving
▪ Search for a sequence of proof steps (applications of inference rules) leading from  to 

▪ E.g., from P  (P  Q), infer Q by Modus Ponens

Properties

▪ Sound algorithm: everything it claims to prove is in fact entailed

▪ Complete algorithm: every sentence that is entailed can be proved

Simple Theorem Proving: Forward Chaining

Forward chaining applies Modus Ponens to generate new facts:
▪ Given X1  X2  … Xn  Y and X1, X2, …, Xn

▪ Infer Y

Forward chaining keeps applying this rule, adding new facts, until
nothing more can be added

Requires KB to contain only definite clauses:
▪ (Conjunction of symbols)  symbol; or

▪ A single symbol (note that X is equivalent to True  X)

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

P  Q

L  M  P

B  L M

A  P  L

A  B  L

A

B

CLAUSES

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise

inferred ← a table, where inferred[s] is initially false for all s

agenda ← a queue of symbols, initially symbols known to be true in KB

P  Q

L  M  P

B  L M

A  P  L

A  B  L

A

B

1

2

2

2

2

0

0

CLAUSES AGENDACOUNT

A false

B false

L false

M false

P false

Q false

INFERRED

Q

P

M

L

BA

Forward Chaining Example: Proving Q

P  Q

L M  P

B  L  M

A  P  L

A  B  L

A

B

1

2

2

2

2

0

0

A false

B false

L false

M false

P false

Q false

CLAUSES

AGENDA

A B

INFERREDCOUNT

Lx

xxxx true

// 1

// 1

x

xxxx true

// 1

// 0

x

xxxx true

// 1

// 0

Mx

xxxx true

// 0

Px

xxxx true

// 0

// 0

L Qx x

xxxx true

Forward Chaining Algorithm
function PL-FC-ENTAILS?(KB, q) returns true or false

count ← a table, where count[c] is the number of symbols in c’s premise

inferred ← a table, where inferred[s] is initially false for all s

agenda ← a queue of symbols, initially symbols known to be true in KB

while agenda is not empty do

p ← Pop(agenda)

if p = q then return true

if inferred[p] = false then

inferred[p]←true

for each clause c in KB where p is in c.premise do

decrement count[c]

if count[c] = 0 then add c.conclusion to agenda

return false

Properties of forward chaining

Theorem: FC is sound and complete for definite-clause KBs

Soundness: follows from soundness of Modus Ponens (easy to check)

Completeness proof:

1. FC reaches a fixed point where no new atomic sentences are derived

2. Consider the final inferred table as a model m, assigning true/false to symbols

3. Every clause in the original KB is true in m

Proof: Suppose a clause a1... ak  b is false in m
Then a1... ak is true in m and b is false in m
Therefore the algorithm has not reached a fixed point!

4. Hence m is a model of KB

5. If KB |= q, q is true in every model of KB, including m

A false

B false

L false

M false

P false

Q false

xxxx true

xxxx true

xxxx true

xxxx true

xxxx true

xxxx true

Inference Rules
Modus Ponens

𝛼⇒𝛽, 𝛼

𝛽

Unit Resolution

𝑎∨𝑏, ¬𝑏∨𝑐

𝑎∨𝑐

General Resolution

𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Notation Alert!

Resolution
Algorithm Overview

function PL-RESOLUTION?(KB, ) returns true or false

We want to prove that KB entails 

In other words, we want to prove that we cannot satisfy (KB and not )

1. Start with a set of CNF clauses, including the KB as well as ¬
2. Keep resolving pairs of clauses until

A. You resolve the empty clause

Contradiction found!

KB 𝛼¬ٿ cannot be satisfied

Return true, KB entails 
B. No new clauses added

Return false, KB does not entail 

Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 ¬¬𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

Resolution
Example trying to prove ¬𝑃1,2

¬𝑃2,1 ∨ 𝐵1,1 ¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝑃2,1 ¬𝑃1,2 ∨ 𝐵1,1 ¬𝐵1,1 𝑃1,2

Knowledge Base

General Resolution
𝑎1∨⋯∨𝑎𝑚∨𝑏, ¬𝑏∨𝑐1∨⋯∨𝑐𝑛

𝑎1∨⋯∨𝑎𝑚∨𝑐1∨⋯∨𝑐𝑛

¬𝐵1,1 ∨ 𝑃1,2 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃2,1 ¬𝐵1,1 ∨ 𝑃2,1 ∨ 𝐵1,1 𝑃1,2 ∨ 𝑃2,1 ∨ ¬𝑃1,2 ¬𝑃2,1 ¬𝑃1,2

Resolution
function PL-RESOLUTION?(KB, ) returns true or false

clauses ← the set of clauses in the CNF representation of KB 𝛼¬ٿ

new ← { }

loop do

for each pair of clauses 𝐶𝑖 , 𝐶𝑗 in clauses do

resolvents ← PL-RESOLVE(𝐶𝑖 , 𝐶𝑗)

if resolvents contains the empty clause then

return true

new ← new ∪ resolvants

if new ⊆ clauses then

return false

clauses ← clauses ∪ new

Properties
Forward Chaining is:

▪ Sound and complete for definite-clause KBs

▪ Complexity: linear time

Resolution is:

▪ Sound and complete for any PL KBs!

▪ Complexity: exponential time 

