Local Search Warm-up

How to find the top of Mount
Everest in a thick fog while
suffering from amnesia?

Al: Representation and Problem Solving
Local Search

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU Al, http://ai.berkeley.edu

Learning Objectives

* Describe and implement the following local search algorithms
* |terative improvement algorithm with min-conflict heuristic for CSPs

Hill Climbing (Greedy Local Search)

Random Walk

Simulated Annealing

Beam Search

Genetic Algorithm

* |[dentify completeness and optimality of local search algorithms

* Compare different local search algorithms as well as contrast with
classical search algorithms

* Select appropriate local search algorithms for real-world problems

Local Search

* Can be applied to identification problems (e.g., CSPs), as well as some
planning and optimization problems

* Typically use a complete-state formulation, e.g., all variables assigned
in a CSP (may not satisfy all the constraints)

iterative Improvement for CSPs

iterative Improvement for CSPs

e Start with an arbitrary assignment, iteratively reassign variable values

* While not solved,
 Variable selection: randomly select a conflicted variable

e Value selection with min-conflicts heuristic h: Choose a value that violates the fewest
constraints (break tie randomly) > 3

v
* For n-Queens: Variables x; € {1..n}; (7Z<onstraints x,}‘% Xj, |xl- — xj]ﬂ;t i —jl,Vi+#j
)= | o

Demo — n-Queens

[Demo: n-queens — iterative improvement (L5D1)]

Demo — Graph Coloring

iterative Improvement for CSPs

* Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)!

* Same for any randomly-generated CSP except in a narrow range of the ratio

o number of constraints
number of variables

D/

|
critical
ratio

CPU
time

Local Search

* A local search algorithmis...
* Complete if it always finds a goal if one exists
* Optimal if it always finds a gloﬁal minimum/maximum

s Iterative Improvement for CSPs complete?

No! May get stuck in a local optima

State-Space Landscape

In identification problems, could be a function measuring how close you are to a
valid solution, e.g., —1 X #conflicts in n-Queens/CSP

objectixe function

oulder

lobal maximum What’s the difference between
shoulder and flat local maximum

(both are plateaux)?

local maximum
Cflat” local maximum>

»state space

current
state

Hill Climbing (Greedy Local Search)

e Simple, general idea:
e Start wherever

* Repeat: move to the best “neighboring” state
(successor state)

* |If no neighbors better than current, quit

Complete? No!

Optimal? No!

Hill Climbing (Greedy Local Search)
y -

function HILL-CLIMBING(problem) returns a state that is a local maximum

current «— wKE-NODE(pmblem.INITIAL-STATE)
loop do
neighbor < a highest-valued successor of current
if HW < current. VALUE then return current.STATE
> current < neighbor

How to apply Hill Climbing to n-Queens? How is it different from lterative lmpraovement?
Define a state as a board with n queens on it, one in each column B X]

Define a successor (neighbor) of a state as one that is generated by moving a _yi

single queen to another square in the same column How many successors? ,
Y

Hill Climbing (Greedy Local Search)

function HILL-CLIMBING(problem) returns a state that is a local maximum

current < MAKE-NODE(problem.INITIAL-STATE) What if there is a tie?
lOOf) do '
7

eighbor < a highest-valued successor of current Typically break ties randomly
if neighbor. VALUE < current. VALUE then|return current.STATE]l':(- = then

current — neighbor \n ot if we do not stop here? Make a sideway move if “="

* In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
* Takes 4 steps on average when it succeeds, and 3 steps when it fails

* When allow for <100 consecutive sideway moves, solves 94% of problem instances
* Takes 21 steps on average when it succeeds, and 64 steps when it fails

Variants of Hill Climbing @

* Random-restart hill climbing

e “If at first you don’t succeed, try, try again.”
e Complete!
 What kind of landscape will random-restarts hill climbing work the best?

 Stochastic hill climbing

* Choose randomly from the uphill moves, with probability dependent on the
“steepness” (i.e., amount of improvement)

e Converge slower than steepest ascent, but may find better solutions

* First-choice hill climbing

* Generate successors randomly (one by one) until a better one is found
 Suitable when there are too many successors to enumerate

Variants of Hill Climbing

« What if variables are continuous, e.g. find x € [0,1] that maximizes f(x)?

 Gradient ascent

* Use gradient to find best direction
* Use the magnitude of the gradient to determine how big a step you move

objectixe function

shoulder

N

lobal maximum

local maximum

"flat" local maximum

- :
e » Value space of var|able‘sJ

state -

Piazza Poll: Hill Climbing

1. Starting from X, where do you end up?
Giectivei-unction 2. Starting from Y, where do you end up?
/\ 3. Starting from Z, where do you end up?

A:X—->AY->D,Z->E
B:X—->B,Y—>D,Z—->E
CX->X,Y->C,Z-7

State Space
-

Random Walk

* Uniformly randomly choose a neighbor to move to

* Complete but inefficient!

.

Simulated Annealing

}nQ«% WOt W?\w
 Combines random walk and hill climbing

* Complete and efficient

* Inspired by statistical physics

* Annealing — Metallurgy
* Heating metal to high temperature then cooling
e Reaching low energy state

e Simulated Annealing — Local Search
* Allow for downhill moves and make them rarer as time goes on
e Escape local maxima and reach global maxima

Simulated Annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current <— MAKE-NODE(problem.INITIAL-STATE)
for t =1 to oo do

T — schedule(Pr Control the change of

if 7 = 0 then return current | temperature T' (1 over time)
next < a randomly selected successor of current
AFE «— next. VALUE — current.VALUE

if AE > 0 then_current < next

else current < next only with probability e Unlike hill climbing, move
downhill with some prob.

Almost the same as hill climbing
except for a random successor

Simulated Annealing

P[move downhill] = e£E/L

* Bad moves are more likely to be allowed when T
is high (at the beginning of the algorithm)

* Worse moves are less likely to be allowed
e
Stationary distribution: p(ib) x ¢ kT

Guarantee: If T decreased slowly enough, will converge to optimal state!

But! In reality, the more downhill steps you need to escape a local optimum, the
less likely you are to ever make them all in a row

Local Beam Search

* Keep track of k states

* In each iteration
* Generate all successors of all k states
* Only retain the best k successors among them all

\\(& ck““\°\
How is this different from K local sear with different initial states in parallel?

——
The searches communicate! “Come over here, the grass is greener!”

Analogous to evolution / natural selection!

Limitations and Variants of Local Beam Search

 Suffer from a lack of diversity; Quickly concentrated in a small region
of the state space

e Variant: Stochastic beam search

 Randomly choose k successors (offsprings) of a state (organism) population
according to its objective value (fitness)

Genetic Algorithms

* Inspired by evolutionary biology

* Nature provides an objective function (reproductive fitness) that Darwinian
evolution could be seen as attempting to optimize

e A variant of stochastic beam search

* Successors are generated by &rr_mlgi,ning two parent states instead of
modifying a single state (sexual reproduction ratherthan asexual
reproduction)

Genetic Algorithms for 8-Queens

J, Fithess Selection Rairs Cross—-Over

24748552 || 24 31% 327V52411 32948552 | 3274812
32752411 1] 23 29% 247’48552 >_< 24152411 24752411
24415124 [] 20 26% 327.5 | 11 32752024 322124
32543213 | 11 14% 2441;§x24 >_< 24415411 244154

State Representation: 8-digit string, each digitin {1.. 8}
Fitness Function: #Nonattacking pairs

Selection: Select k individuals randomly with probability proportional to their fitness
value (random selection with replacement)

Crossover: For each pair, choose a crossover point € {1..7}, generate two offsprings by
crossing over the parent strings

Mutation (With some prob.): Choose a digit and change it to a different value in {1.. 8}
What if k is an odd number?

Genetic Algorithms for 8-Queens

* Why does crossover make sense here?

 Would crossover work well without a
selection operator?

Genetic Algorithms

 Start with a population of k individuals (states)

* |n each iteration
* Apply a fitness function to each individual in the current population
* Apply a selection operator to select k pairs of parents
* Generate k offsprings by applying a crossover operator on the parents

* For each offspring, apply a mutation operation with a (usually small) independent
probability

* For a specific problem, need to design these functions and operators

* Successful use of genetic algorithms require careful engineering of the
state representation!

Genetic Algorithms

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
inputs: population, a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new _population «— empty set
for : = 1 to SIZE(population) do
x < RANDOM-SELECTION(population, FITNESS-FN)
1y «— RANDOM-SELECTION(population, FITNESS-FN)
child <— REPRODUCE(z, y)
if (small random probability) then child < MUTATE(child)
add child to new_population
population «— new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN

How is this different from the illustrated procedure on 8-Queens?

Exercise: Traveling Salesman Problem

* Given a list of cities and the distances between each pair of cities,
what is the shortest possible route that visits each city and returns to
the origin city?

* Input: ¢;;, Vi,j €1{0,...,n — 1}

* Qutput: A ordered sequence {v,, vy, ..., ¥y } with vy = 0, v,, = 0 and
all other indices show up exactly once

* Question: How to apply Local Search algorithms to this problem?

Summary: Local Search

 Maintain a constant number of current nodes or states, and move to
“neighbors” or generate “offsprings” in each iteration
* Do not maintain a search tree or multiple paths
* Typically do not retain the path to the node

* Advantages
e Use little memory

e Can potentially solve large-scale problems or get a reasonable (suboptimal or
almost feasible) solution

Learning Objectives

* Describe and implement the following local search algorithms
* |terative improvement algorithm with min-conflict heuristic for CSPs

Hill Climbing (Greedy Local Search)

Random Walk

Simulated Annealing

Beam Search

Genetic Algorithm

* |[dentify completeness and optimality of local search algorithms

* Compare different local search algorithms as well as contrast with
classical search algorithms

* Select appropriate local search algorithms for real-world problems

