
Local Search Warm-up

How to find the top of Mount 
Everest in a thick fog while 
suffering from amnesia?



AI: Representation and Problem Solving
Local Search

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu



Learning Objectives

• Describe and implement the following local search algorithms
• Iterative improvement algorithm with min-conflict heuristic for CSPs
• Hill Climbing (Greedy Local Search)
• Random Walk
• Simulated Annealing
• Beam Search
• Genetic Algorithm

• Identify completeness and optimality of local search algorithms

• Compare different local search algorithms as well as contrast with 
classical search algorithms

• Select appropriate local search algorithms for real-world problems



Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some 
planning and optimization problems

• Typically use a complete-state formulation, e.g., all variables assigned 
in a CSP (may not satisfy all the constraints)



Iterative Improvement for CSPs



Iterative Improvement for CSPs

• Start with an arbitrary assignment, iteratively reassign variable values

• While not solved,
• Variable selection: randomly select a conflicted variable
• Value selection with min-conflicts heuristic ℎ: Choose a value that violates the fewest 

constraints (break tie randomly)

• For 𝑛-Queens: Variables 𝑥𝑖 ∈ {1. . 𝑛}; Constraints 𝑥𝑖 ≠ 𝑥𝑗, 𝑥𝑖 − 𝑥𝑗 ≠ 𝑖 − 𝑗 , ∀𝑖 ≠ 𝑗



Demo – 𝑛-Queens

[Demo: n-queens – iterative improvement (L5D1)]



Demo – Graph Coloring



Iterative Improvement for CSPs
• Given random initial state, can solve n-queens in almost constant time for arbitrary n 

with high probability (e.g., n = 10,000,000)!

• Same for any randomly-generated CSP except in a narrow range of the ratio



Local Search

• A local search algorithm is…
• Complete if it always finds a goal if one exists

• Optimal if it always finds a global minimum/maximum

Is Iterative Improvement for CSPs complete?

No! May get stuck in a local optima

ℎ = 1



State-Space Landscape
In identification problems, could be a function measuring how close you are to a 
valid solution, e.g., −1 × #conflicts in n-Queens/CSP

What’s the difference between 
shoulder and flat local maximum 
(both are plateaux)?



Hill Climbing (Greedy Local Search)
• Simple, general idea:

• Start wherever

• Repeat: move to the best “neighboring” state 
(successor state)

• If no neighbors better than current, quit

Complete?

Optimal?

No!

No!



Hill Climbing (Greedy Local Search)

How to apply Hill Climbing to 𝑛-Queens? How is it different from Iterative Improvement?

Define a state as a board with 𝑛 queens on it, one in each column
Define a successor (neighbor) of a state as one that is generated by moving a 
single queen to another square in the same column How many successors?



Hill Climbing (Greedy Local Search)

What if there is a tie?

Typically break ties randomly

What if we do not stop here?

• In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
• Takes 4 steps on average when it succeeds, and 3 steps when it fails

• When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
• Takes 21 steps on average when it succeeds, and 64 steps when it fails

Make a sideway move if “=”



Variants of Hill Climbing

• Random-restart hill climbing
• “If at first you don’t succeed, try, try again.”
• Complete!
• What kind of landscape will random-restarts hill climbing work the best?

• Stochastic hill climbing
• Choose randomly from the uphill moves, with probability dependent on the 

“steepness” (i.e., amount of improvement)
• Converge slower than steepest ascent, but may find better solutions

• First-choice hill climbing
• Generate successors randomly (one by one) until a better one is found
• Suitable when there are too many successors to enumerate



Variants of Hill Climbing
• What if variables are continuous, e.g. find 𝑥 ∈ [0,1] that maximizes 𝑓 𝑥 ?

• Gradient ascent

• Use gradient to find best direction

• Use the magnitude of the gradient to determine how big a step you move

Value space of variables



Piazza Poll: Hill Climbing

1. Starting from X, where do you end up?
2. Starting from Y, where do you end up?
3. Starting from Z, where do you end up?

A: 𝑋 → 𝐴, 𝑌 → 𝐷, 𝑍 → 𝐸
B: 𝑋 → 𝐵, 𝑌 → 𝐷, 𝑍 → 𝐸
C: 𝑋 → 𝑋, 𝑌 → 𝐶, 𝑍 → 𝑍



Random Walk

• Uniformly randomly choose a neighbor to move to

• Complete but inefficient!



Simulated Annealing

• Combines random walk and hill climbing

• Complete and efficient

• Inspired by statistical physics

• Annealing – Metallurgy
• Heating metal to high temperature then cooling

• Reaching low energy state

• Simulated Annealing – Local Search
• Allow for downhill moves and make them rarer as time goes on

• Escape local maxima and reach global maxima



Simulated Annealing

Almost the same as hill climbing 
except for a random successor

Unlike hill climbing, move 
downhill with some prob.

Control the change of 
temperature 𝑇 (↓ over time)



Simulated Annealing

• ℙ move downhill = 𝑒Δ𝐸/𝑇

• Bad moves are more likely to be allowed when 𝑇
is high (at the beginning of the algorithm)

• Worse moves are less likely to be allowed

• Stationary distribution:

• Guarantee: If 𝑇 decreased slowly enough, will converge to optimal state!

• But! In reality, the more downhill steps you need to escape a local optimum, the 
less likely you are to ever make them all in a row



Local Beam Search

• Keep track of 𝑘 states

• In each iteration
• Generate all successors of all 𝑘 states

• Only retain the best 𝑘 successors among them all

Analogous to evolution / natural selection!

The searches communicate! “Come over here, the grass is greener!”

How is this different from 𝐾 local searches with different initial states in parallel? 



Limitations and Variants of Local Beam Search

• Suffer from a lack of diversity; Quickly concentrated in a small region 
of the state space

• Variant: Stochastic beam search
• Randomly choose 𝑘 successors (offsprings) of a state (organism) population 

according to its objective value (fitness)



Genetic Algorithms

• Inspired by evolutionary biology
• Nature provides an objective function (reproductive fitness) that Darwinian 

evolution could be seen as attempting to optimize

• A variant of stochastic beam search
• Successors are generated by combining two parent states instead of 

modifying a single state (sexual reproduction rather than asexual 
reproduction)



Genetic Algorithms for 8-Queens

• State Representation: 8-digit string, each digit in {1. . 8}

• Fitness Function: #Nonattacking pairs

• Selection: Select 𝑘 individuals randomly with probability proportional to their fitness 
value (random selection with replacement)

• Crossover: For each pair, choose a crossover point ∈ {1. . 7}, generate two offsprings by 
crossing over the parent strings

• Mutation (With some prob.): Choose a digit and change it to a different value in {1. . 8}

What if 𝑘 is an odd number?



Genetic Algorithms for 8-Queens

• Why does crossover make sense here?

• Would crossover work well without a 
selection operator?



Genetic Algorithms

• Start with a population of 𝑘 individuals (states)

• In each iteration
• Apply a fitness function to each individual in the current population
• Apply a selection operator to select 𝑘 pairs of parents
• Generate 𝑘 offsprings by applying a crossover operator on the parents
• For each offspring, apply a mutation operation with a (usually small) independent 

probability

• For a specific problem, need to design these functions and operators

• Successful use of genetic algorithms require careful engineering of the 
state representation!



Genetic Algorithms

How is this different from the illustrated procedure on 8-Queens?



Exercise: Traveling Salesman Problem

• Given a list of cities and the distances between each pair of cities, 
what is the shortest possible route that visits each city and returns to 
the origin city?

• Input: 𝑐𝑖𝑗 , ∀𝑖, 𝑗 ∈ {0, … , 𝑛 − 1}

• Output: A ordered sequence {𝑣0, 𝑣1, … , 𝑣𝑛} with 𝑣0 = 0, 𝑣𝑛 = 0 and 
all other indices show up exactly once

• Question: How to apply Local Search algorithms to this problem?



Summary: Local Search

• Maintain a constant number of current nodes or states, and move to 
“neighbors” or generate “offsprings” in each iteration
• Do not maintain a search tree or multiple paths

• Typically do not retain the path to the node

• Advantages
• Use little memory

• Can potentially solve large-scale problems or get a reasonable (suboptimal or 
almost feasible) solution



Learning Objectives

• Describe and implement the following local search algorithms
• Iterative improvement algorithm with min-conflict heuristic for CSPs
• Hill Climbing (Greedy Local Search)
• Random Walk
• Simulated Annealing
• Beam Search
• Genetic Algorithm

• Identify completeness and optimality of local search algorithms

• Compare different local search algorithms as well as contrast with 
classical search algorithms

• Select appropriate local search algorithms for real-world problems


