Local Search Warm-up

How to find the top of Mount Everest in a thick fog while suffering from amnesia?

Al: Representation and Problem Solving Local Search

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu

Learning Objectives

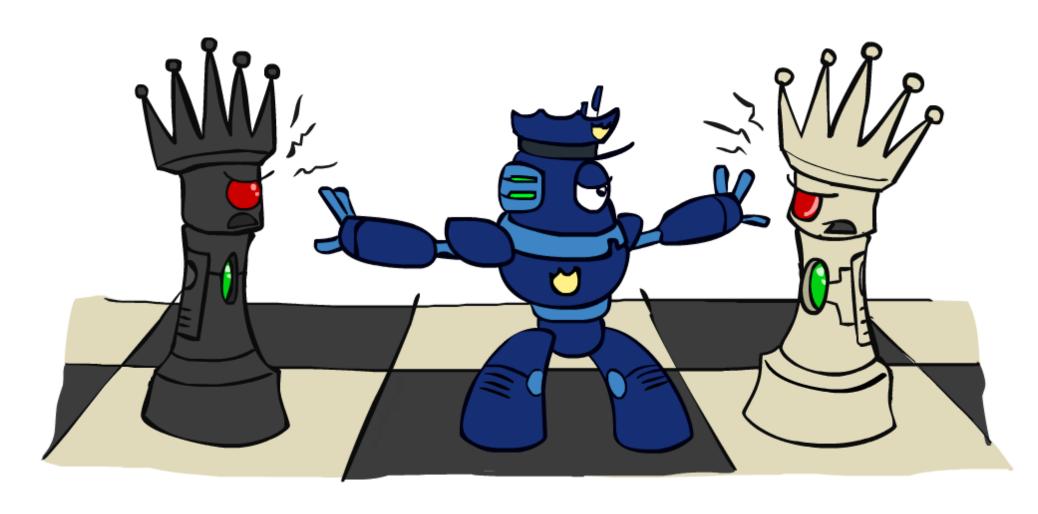
- Describe and implement the following local search algorithms
 - Iterative improvement algorithm with min-conflict heuristic for CSPs
 - Hill Climbing (Greedy Local Search)
 - Random Walk
 - Simulated Annealing
 - Beam Search
 - Genetic Algorithm
- Identify completeness and optimality of local search algorithms
- Compare different local search algorithms as well as contrast with classical search algorithms
- Select appropriate local search algorithms for real-world problems

Local Search

• Can be applied to identification problems (e.g., CSPs), as well as some planning and optimization problems

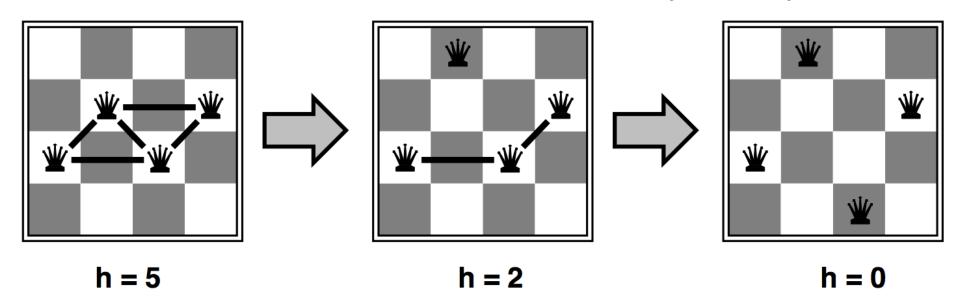
 Typically use a complete-state formulation, e.g., all variables assigned in a CSP (may not satisfy all the constraints)

Iterative Improvement for CSPs



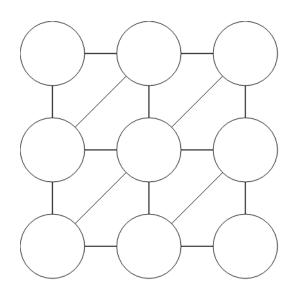
Iterative Improvement for CSPs

- Start with an arbitrary assignment, iteratively reassign variable values
- While not solved,
 - Variable selection: randomly select a conflicted variable
 - Value selection with min-conflicts heuristic h: Choose a value that violates the fewest constraints (break tie randomly)
- For *n*-Queens: Variables $x_i \in \{1..n\}$; Constraints $x_i \neq x_j$, $|x_i x_j| \neq |i j|$, $\forall i \neq j$



Demo-n-Queens

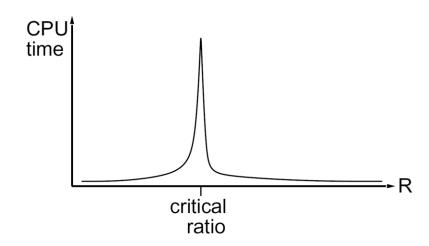
Demo – Graph Coloring

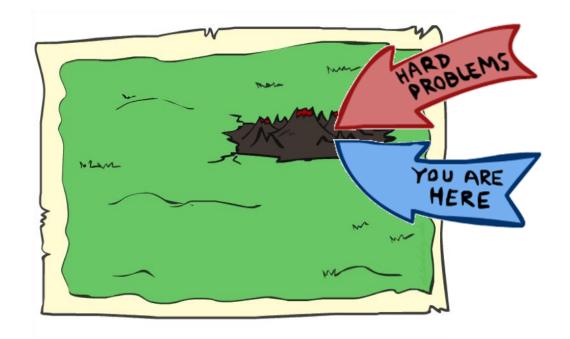


Iterative Improvement for CSPs

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- Same for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$





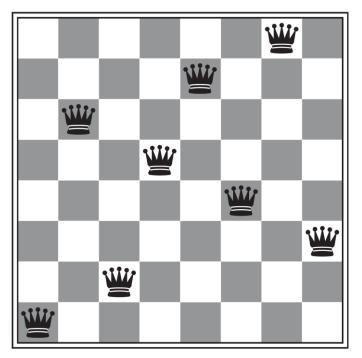
Local Search

- A local search algorithm is...
 - Complete if it always finds a goal if one exists
 - Optimal if it always finds a global minimum/maximum

h = 1

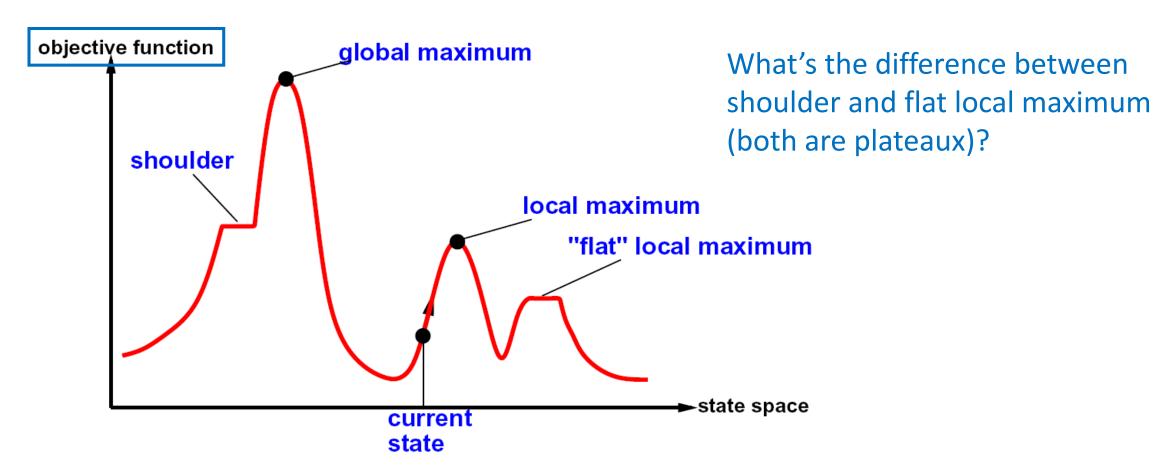
Is Iterative Improvement for CSPs complete?

No! May get stuck in a local optima



State-Space Landscape

In identification problems, could be a function measuring how close you are to a valid solution, e.g., $-1 \times \text{\#conflicts}$ in n-Queens/CSP



Hill Climbing (Greedy Local Search)

• Simple, general idea:

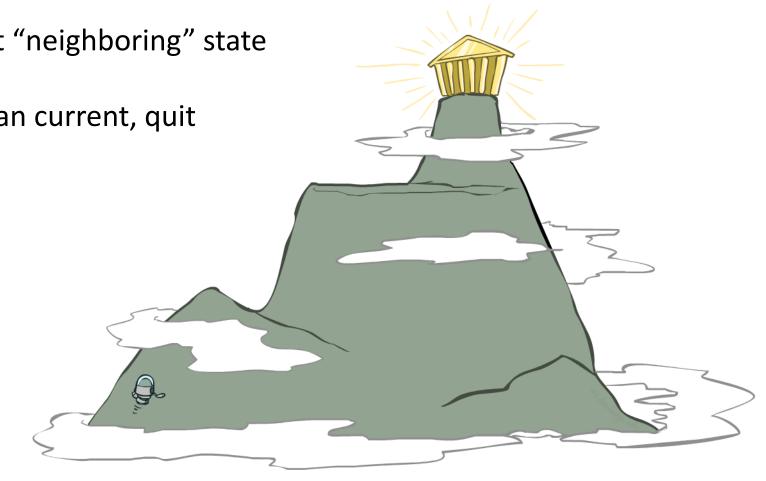
Start wherever

 Repeat: move to the best "neighboring" state (successor state)

• If no neighbors better than current, quit

Complete? No!

Optimal? No!



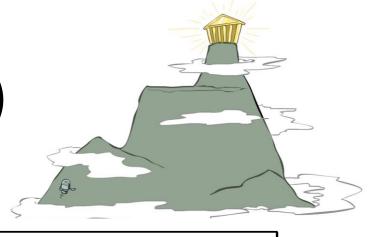
Hill Climbing (Greedy Local Search)


```
function HILL-CLIMBING(problem) returns a state that is a local maximum current \leftarrow \text{Make-Node}(problem.\text{Initial-State})
loop do
neighbor \leftarrow \text{a highest-valued successor of } current
if neighbor. Value \leq current. Value then return current. State current \leftarrow neighbor
```

How to apply Hill Climbing to n-Queens? How is it different from Iterative Improvement?

Define a state as a board with n queens on it, one in each column Define a successor (neighbor) of a state as one that is generated by moving a single queen to another square in the same column How many successors?

Hill Climbing (Greedy Local Search)



```
function HILL-CLIMBING(problem) returns a state that is a local maximumcurrent \leftarrow MAKE-NODE(problem.INITIAL-STATE)What if there is a tie?loop doTypically break ties randomlyneighbor \leftarrow a highest-valued successor of currentTypically break ties randomlyif neighbor. VALUE \leq current. VALUE then return current. STATEcurrent \leftarrow neighborWhat if we do not stop here? Make a sideway move if "="
```

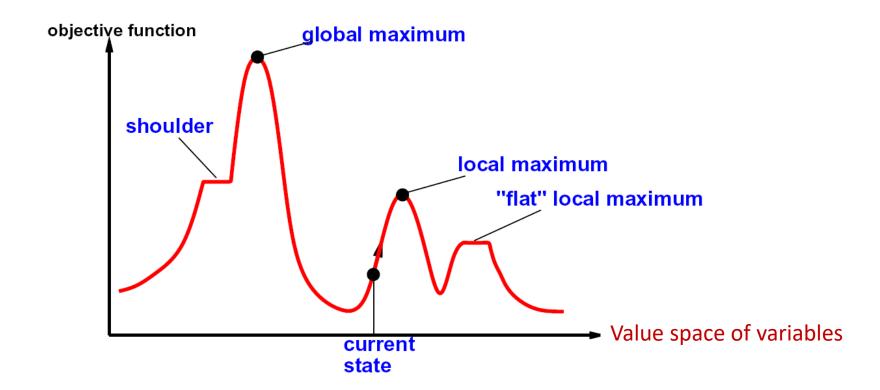
- In 8-Queens, steepest-ascent hill climbing solves 14% of problem instances
 - Takes 4 steps on average when it succeeds, and 3 steps when it fails
- When allow for ≤100 consecutive sideway moves, solves 94% of problem instances
 - Takes 21 steps on average when it succeeds, and 64 steps when it fails

Variants of Hill Climbing

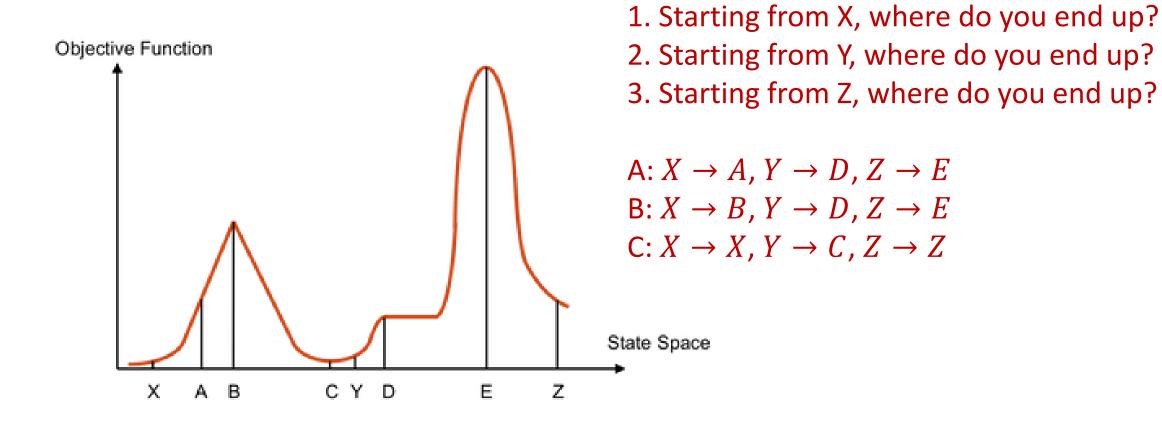
- Random-restart hill climbing
 - "If at first you don't succeed, try, try again."
 - Complete!
 - What kind of landscape will random-restarts hill climbing work the best?
- Stochastic hill climbing
 - Choose randomly from the uphill moves, with probability dependent on the "steepness" (i.e., amount of improvement)
 - Converge slower than steepest ascent, but may find better solutions
- First-choice hill climbing
 - Generate successors randomly (one by one) until a better one is found
 - Suitable when there are too many successors to enumerate

Variants of Hill Climbing

- What if variables are continuous, e.g. find $x \in [0,1]$ that maximizes f(x)?
 - Gradient ascent
 - Use gradient to find best direction
 - Use the magnitude of the gradient to determine how big a step you move



Piazza Poll: Hill Climbing



Random Walk

• Uniformly randomly choose a neighbor to move to

Complete but inefficient!

Simulated Annealing

- Combines random walk and hill climbing
- Complete and efficient
- Inspired by statistical physics
- Annealing Metallurgy
 - Heating metal to high temperature then cooling
 - Reaching low energy state
- Simulated Annealing Local Search
 - Allow for downhill moves and make them rarer as time goes on
 - Escape local maxima and reach global maxima

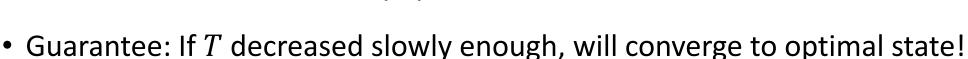
Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
  for t = 1 to \infty do
                                       Control the change of
      T \leftarrow schedule(t)
                                      temperature T (\downarrow over time)
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
                                                          Almost the same as hill climbing
      \Delta E \leftarrow next. Value - current. Value
                                                           except for a random successor
      if \Delta E > 0 then current \leftarrow next
                                                           Unlike hill climbing, move
      else current \leftarrow next only with probability e^{\Delta E/T}
                                                           downhill with some prob.
```

Simulated Annealing

- $\mathbb{P}[\text{move downhill}] = e^{\Delta E/T}$
 - Bad moves are more likely to be allowed when T is high (at the beginning of the algorithm)
 - Worse moves are less likely to be allowed

• Stationary distribution:
$$p(x) \propto e^{rac{E(x)}{kT}}$$



• But! In reality, the more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row

Local Beam Search

- Keep track of k states
- In each iteration
 - Generate all successors of all k states
 - Only retain the best k successors among them all

How is this different from *K* local searches with different initial states in parallel?

The searches communicate! "Come over here, the grass is greener!"

Analogous to evolution / natural selection!

Limitations and Variants of Local Beam Search

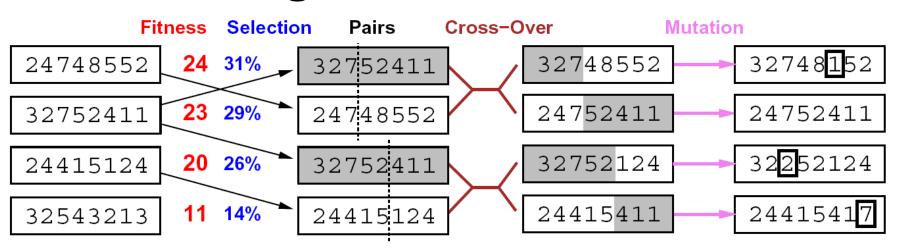
 Suffer from a lack of diversity; Quickly concentrated in a small region of the state space

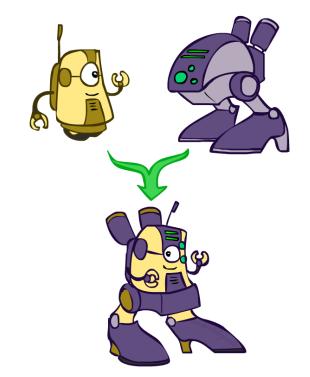
- Variant: Stochastic beam search
 - Randomly choose k successors (offsprings) of a state (organism) population according to its objective value (fitness)

Genetic Algorithms

- Inspired by evolutionary biology
 - Nature provides an objective function (reproductive fitness) that Darwinian evolution could be seen as attempting to optimize
- A variant of stochastic beam search
 - Successors are generated by combining two parent states instead of modifying a single state (sexual reproduction rather than asexual reproduction)

Genetic Algorithms for 8-Queens

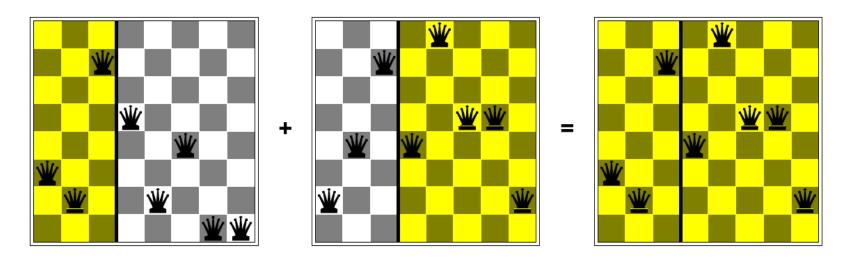




- State Representation: 8-digit string, each digit in {1..8}
- Fitness Function: #Nonattacking pairs
- Selection: Select k individuals randomly with probability proportional to their fitness value (random selection with replacement)
- Crossover: For each pair, choose a crossover point $\in \{1..7\}$, generate two offsprings by crossing over the parent strings
- Mutation (With some prob.): Choose a digit and change it to a different value in $\{1...8\}$

What if *k* is an odd number?

Genetic Algorithms for 8-Queens



- Why does crossover make sense here?
- Would crossover work well without a selection operator?

Genetic Algorithms

- Start with a population of k individuals (states)
- In each iteration
 - Apply a fitness function to each individual in the current population
 - Apply a selection operator to select k pairs of parents
 - Generate k offsprings by applying a crossover operator on the parents
 - For each offspring, apply a mutation operation with a (usually small) independent probability
- For a specific problem, need to design these functions and operators
- Successful use of genetic algorithms require careful engineering of the state representation!

Genetic Algorithms

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to Size(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          y \leftarrow \text{RANDOM-SELECTION}(population, \text{FITNESS-FN})
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
```

How is this different from the illustrated procedure on 8-Queens?

Exercise: Traveling Salesman Problem

- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?
- Input: c_{ij} , $\forall i, j \in \{0, ..., n-1\}$
- Output: A ordered sequence $\{v_0,v_1,\dots,v_n\}$ with $v_0=0$, $v_n=0$ and all other indices show up exactly once

Question: How to apply Local Search algorithms to this problem?

Summary: Local Search

- Maintain a constant number of current nodes or states, and move to "neighbors" or generate "offsprings" in each iteration
 - Do not maintain a search tree or multiple paths
 - Typically do not retain the path to the node
- Advantages
 - Use little memory
 - Can potentially solve large-scale problems or get a reasonable (suboptimal or almost feasible) solution

Learning Objectives

- Describe and implement the following local search algorithms
 - Iterative improvement algorithm with min-conflict heuristic for CSPs
 - Hill Climbing (Greedy Local Search)
 - Random Walk
 - Simulated Annealing
 - Beam Search
 - Genetic Algorithm
- Identify completeness and optimality of local search algorithms
- Compare different local search algorithms as well as contrast with classical search algorithms
- Select appropriate local search algorithms for real-world problems