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Assign Red, Green, or Blue
Neighbors must be different

Sudoku

1) What is your brain doing to solve these?
2) How would you solve these with search (BFS, DFS, etc.)?

These are both Constraint Satisfaction Problems (CSP)



AI: Representation and Problem Solving
Constraint Satisfaction Problems (CSPs)

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu



Announcement

• Instructor for lectures
• This week: Fei

• Next week: Pat and Fei

• Reminder
• HW2 (written) due 9/10 Tue, 10 pm

• P1 due 9/12 Thu, 10 pm



Learning Objectives

• Describe definition of CSP problems and its connection with general 
search problems

• Formulate a real-world problem as a CSP

• Describe and implement backtracking algorithm

• Define arc consistency

• Describe and implement forward checking and AC-3

• Explain the differences between MRV and LCV heuristics

• Understand the complexity of general binary CSP and tree-structured 
binary CSP

Will cover in next lecture



What is Search For?
• Planning: sequences of actions

• The path to the goal is the important thing

• Paths have various costs, depths

• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path

• All paths at the same depth (for some formulations)

Are the warm-up assignments planning or 
identification problems?



Constraint Satisfaction Problems

• CSP is a special class of search problems
• Mostly identification problems
• Have specialized algorithms for them

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• State is defined by variables Xi with values from a 

domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable 

combinations of values for subsets of variables



Why study CSPs?

• Assignment problems: e.g., who teaches what class

• Timetabling problems: e.g., which class is offered when and where?

• Hardware configuration

• Transportation scheduling

• Factory scheduling

• Circuit layout

• Fault diagnosis

• … lots more!

• Sometimes involve real-valued variables…

Many real-world problems can be formulated as CSPs



CSP Examples



Example: Map Coloring
• Variables:

• Domains:

• Constraints: adjacent regions must have different colors

• Solutions are assignments satisfying all constraints, e.g.:

Implicit:

Explicit:



Constraint Graphs



Constraint Graphs

• Binary CSP: each constraint relates (at most) two 
variables

• Binary constraint graph: nodes are variables, arcs 
show constraints

• General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!



Varieties of CSPs and Constraints



Example: N-Queens

• Formulation 1:
• Variables:

• Domains:

• Constraints



Example: N-Queens

• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:



Example: Cryptarithmetic

• Variables:

• Domains:

• Constraints:



Example: Sudoku

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch 
of pairwise inequality 
constraints)

• Variables: Each (open) square

• Domains: {1,2,…,9}

• Constraints:



Varieties of CSPs
• Discrete Variables

• Finite domains

• Size d means O(dn) complete assignments

• E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job

• Linear constraints solvable, nonlinear undecidable

• Continuous variables

• E.g., start/end times for Hubble Telescope observations

• Linear constraints solvable in polynomial time

We will cover today

We will cover in later lecture (linear programming)



Varieties of Constraints

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent 

to reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Focus of today

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems



Solving CSPs



Standard Search Formulation
• Standard search formulation of CSPs

• States defined by the values assigned 
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an 

unassigned variable
• Goal test: the current assignment is 

complete and satisfies all constraints

• We’ll start with the straightforward, 
naïve approach, then improve it

→Can be any unassigned variable



Depth First Search

• At each node, assign a value 
from the domain to the 
variable

• Check feasibility (constraints) 
when the assignment is 
complete



Demo – Naïve Search

Keep these questions in mind:

Q1. How is the naïve search process in the 
demo different from the DFS process we just 
described?

Q2. Why the naïve search is “naïve”? How to 
make it more efficient?



Backtracking Search



Backtracking Search
• Backtracking search is the basic uninformed algorithm for solving CSPs

• Backtracking search = DFS + two improvements

• Idea 1: One variable at a time
• Variable assignments are commutative

• [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assign value to a single variable at each step

• Idea 2: Check constraints as you go
• Consider only values which do not conflict previous assignments
• May need some computation to check the constraints
• “Incremental goal test”

• Can solve n-queens for n  25



Backtracking Example



Backtracking Search



Backtracking Search

No need to check consistency for a complete assignment



Backtracking Search

Checks consistency at each assignment



Backtracking Search

• Backtracking = DFS + variable-ordering + fail-on-violation

• What are the choice points?



Demo – Backtracking



Improving Backtracking

• General-purpose ideas give huge gains in speed

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?

• In what order should its values be tried?

• Structure: Can we exploit the problem structure?



Filtering



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering 

• After a variable is assigned a value, check related constraints and cross off values of 
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering 

• After a variable is assigned a value, check related constraints and cross off values of 
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

WA
SA

NT
Q

NSW

V

T



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering 

• After a variable is assigned a value, check related constraints and cross off values of 
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has 
most two variables): nodes are variables, edges show constraints



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering 

• After a variable is assigned a value, check related constraints and cross off values of 
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking



• Filtering: Keep track of domains for unassigned variables and cross off bad options

• Forward checking: A simple way for filtering 

• After a variable is assigned a value, check related constraints and cross off values of 
unassigned variables which violate the constraints

• Failure detected if some variables have no values remaining

Filtering: Forward Checking

FAIL – variable with no possible values



Demo – Backtracking with Forward Checking



• Limitations of simple forward checking: propagates information from assigned to 
unassigned variables, but doesn't provide early detection for all failures
• NT and SA cannot both be blue! Why didn’t we detect this yet?

• Constraint propagation: reason from constraint to constraint

Filtering: Constraint Propagation



Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned

(Remove values from the tail!)

Recall: Binary constraint graph for a binary CSP (i.e., each constraint has 
most two variables): nodes are variables, edges show constraints



Consistency of A Single Arc

• An arc X → Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

• Enforce arc consistency: Remove values in domain of X if no corresponding legal Y exists

• Forward checking: Only enforce 𝑋 → 𝑌, ∀ 𝑋, 𝑌 ∈ 𝐸 and 𝑌 newly assigned



How to Enforce Arc Consistency of Entire CSP
• A simplistic algorithm: Cycle over the pairs of variables, enforcing arc-consistency, 

repeating the cycle until no domains change for a whole cycle

• AC-3 (short for Arc Consistency Algorithm #3): A more efficient algorithm ignoring 
constraints that have not been modified since they were last analyzed

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Constraint Propagation!



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->WA
NT->WA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->WA
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->SA
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
Q->SA
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->SA
V->SA
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



Piazza POLL: What gets added to the Queue?

A: NSW->Q, SA->Q, NT->Q
B: Q->NSW, Q->SA, Q->NT

Queue:

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NT->Q
SA->Q
NSW->Q

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
SA->Q
NSW->Q
WA->NT
SA->NT
Q->NT

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP

Queue:
NSW->Q
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP
Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP
Queue:
WA->NT
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

WA
SA

NT
Q

NSW

V

T



AC-3: Enforce Arc Consistency of Entire CSP
Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

!!!

WA
SA

NT
Q

NSW

V

T



• Backtrack on the assignment of Q

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment 

• What’s the downside of enforcing arc consistency?

AC-3: Enforce Arc Consistency of Entire CSP
Queue:
SA->NT
Q->NT
WA->SA
NT->SA
Q->SA
NSW->SA
V->SA
V->NSW
Q->NSW
SA->NSW

Remember: Delete from the tail!

!!!

WA
SA

NT
Q

NSW

V

T



Limitations of Arc Consistency

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not 

know it)

• Arc consistency only checks local 
consistency conditions

• Arc consistency still runs inside a 
backtracking search! What went 

wrong here?



Backtracking Search with AC-3

• Where do you run AC-3?

AC-3(𝑐𝑠𝑝)



Demo – Backtracking with AC-3



Demo – Coloring with a Complex Graph

Compare 
• Backtracking with Forward Checking
• Backtracking with AC-3



Complexity of a single run of AC-3

Recall that the whole backtracking algorithm with AC-3 will call AC-3 many times



Complexity of a single run of AC-3
• An arc is added after a removal of 

value at a node
• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑



Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛2𝑑)

• An arc is added after a removal of 
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑



Complexity of a single run of AC-3

• After a removal, ≤ 𝑛 arcs added
• Total times of adding arcs: 𝑂(𝑛2𝑑)

• An arc is added after a removal of 
value at a node

• 𝑛 node in total, each has ≤ 𝑑 values
• Total times of removal: 𝑂 𝑛𝑑

• Check arc consistency per arc: 𝑂(𝑑2)

Complexity of a single run of AC-3 is at most 𝑂(𝑛2𝑑3)

(Not required) Zhang&Yap (2001) show that its complexity is 𝑂(𝑛2𝑑2)



Ordering



Ordering: Minimum Remaining Values
• Variable Ordering: Minimum remaining values (MRV):

• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?

• Also called “most constrained variable”

• “Fail-fast” ordering



Demo – Coloring with a Complex Graph

Compare 
• Backtracking with Forward Checking
• Backtracking with AC-3
• Backtracking + Forward Checking + Minimum Remaining Values (MRV)



Ordering: Least Constraining Value
• Value Ordering: Least Constraining Value

• Given a choice of variable, choose the least 
constraining value

• i.e., the one that rules out the fewest values in 
the remaining variables

• Note that it may take some computation to 
determine this!  (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible



Demo – Coloring with a Complex Graph

Compare 
• Backtracking with Forward Checking
• Backtracking with AC-3
• Backtracking + Forward Checking + Minimum Remaining Values (MRV)
• Backtracking + AC-3 + MRV + LCV



Structure



Problem Structure
• For general CSPs, worst-case complexity with 

backtracking algorithm is O(dn)

• When the problem has special structure, we can often 
solve the problem more efficiently

• Special Structure 1: Independent subproblems
• Example: Tasmania and mainland do not interact
• Connected components of constraint graph
• Suppose a graph of 𝑛 variables can be broken into 

subproblems, each of only 𝑐 variables:
• Worst-case complexity is O((n/c)(dc)), linear in n
• E.g., n = 80, d = 2, c =20
• 280 = 4 billion years at 10 million nodes/sec
• (4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(nd2) time
• Much smaller compare to general CSPs, where worst-case time is O(dn)
• How?



Tree-Structured CSPs
• Algorithm for tree-structured CSPs:

• Order: Choose a root variable, order variables so that parents precede children



Tree-Structured CSPs
• Algorithm for tree-structured CSPs:

• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)



Tree-Structured CSPs
• Algorithm for tree-structured CSPs:

• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

• Runtime: O(nd2)  (why?)

• Can always find a solution when there is one (why?)



Tree-Structured CSPs
• Algorithm for tree-structured CSPs:

• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

• Runtime: O(nd2)  (why?)

• Can always find a solution when there is one (why?)

Remove backward 𝑂(𝑛𝑑2) : 𝑂 𝑑2 per arc and 𝑂(𝑛) arcs

Assign forward 𝑂(𝑛𝑑): 𝑂(𝑑) per node and 𝑂(𝑛) nodes



Tree-Structured CSPs

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once. 

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass.

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)



Tree-Structured CSPs

• Claim 1: After backward pass, all root-to-leaf arcs are consistent

• Proof: During backward pass, every node except the root node was “visited” once. 

• a. Parent(𝑋𝑖) → 𝑋𝑖 was made consistent when 𝑋𝑖 was visited

• When 𝑋𝑖 was visited, we enforced arc consistency of Parent(𝑋𝑖) → 𝑋𝑖 by reducing the domain of 

Parent(𝑋𝑖). By definition, for every value in the reduced domain of Parent(𝑋𝑖), there was some 𝑥 in the 

domain of 𝑋𝑖 which could be assigned without violating the constraint involving Parent(𝑋𝑖) and 𝑋𝑖

• b. After that, Parent(𝑋𝑖) → 𝑋𝑖 kept consistent until the end of the backward pass.

• Domain of 𝑋𝑖 would not have been reduced after 𝑋𝑖 is visited because 𝑋𝑖’s children were visited before 𝑋𝑖. 

Domain of Parent(𝑋𝑖) could have been reduced further. Arc consistency would still hold by definition.

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)



Tree-Structured CSPs

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack.

• Proof: Follow the backtracking algorithm (on the reduced domains and with the same 

ordering). Induction on position.

Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)



Tree-Structured CSPs

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack.

• Proof: Follow the backtracking algorithm (on the reduced domains and with the same 

ordering). Induction on position. Suppose we have successfully reached node 𝑋𝑖. In the 

current step, the potential failure can only be caused by the constraint between 𝑋𝑖 and 

Parent(𝑋𝑖), since all other variables that are in a same constraint of 𝑋𝑖 have not assigned 

a value yet. Due to the arc consistency of Parent(𝑋𝑖) → 𝑋𝑖, there exists a value 𝑥 in the 

domain of 𝑋𝑖 that does not violate the constraint. So we can successfully assign value to 

𝑋𝑖 and go to the next node. By induction, we can successfully assign a value to a variable 

in each step of the algorithm. A solution is found in the end.

Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)



Tree-Structured CSPs
• Why doesn’t this algorithm work with cycles in the constraint graph?

Note: We’ll see a similar idea with Bayes’ nets in later lectures

We can still apply the algorithm (choose an arbitrary order and draw “forward” arcs).
For remove backward, what would happen?

For assign forward, what would happen?



Tree-Structured CSPs
• Why doesn’t this algorithm work with cycles in the constraint graph?

We can still apply the algorithm (choose an arbitrary order and draw “forward” arcs).
For remove backward, what would happen?
We can enforce all arcs pointing to 𝑋𝑖 when 𝑋𝑖 is visited. The complexity is 𝑂(𝑛2𝑑2). 
After backward pass, the reduced domains do not exclude any solution and all the 
forward arcs are consistent

In a step of assigning values, we may encounter failure because we need to make sure 
the constraints involving the current node and any parent node is satisfied, which could 
be impossible. Therefore, we may need to backtrack.

For assign forward, what would happen?



How to deal with non-binary CSPs?

• Variables:

• Domains:

• Constraints:



Constraint graph for non-binary CSPs

• Variable nodes: nodes to represent the variables

• Constraint nodes: auxiliary nodes to represent the constraints

• Edges: connects a constraint node and its corresponding variables

Constraints:



Solve non-binary CSPs

• Naïve search?
• Yes!

• Backtracking?
• Yes!

• Forward Checking?
• Need to generalize the original FC operation

• (nFC0) After a variable is assigned a value, find all constraints with only one 
unassigned variable and cross off values of that unassigned variable which 
violate the constraint

• There exist other ways to do generalized forward checking



Solve non-binary CSPs

• (Bonus material, not required)

• AC-3? Need to generalize the definition of AC and enforcement of AC

• Generalized arc-consistency (GAC)

• A non-binary constraint is GAC iff for every value for a variable there exist
consistent value combinations for all other variables in the constraint

• Reduced to AC for binary constraints

• Enforcing GAC

• Simple schema: enumerate value combination for all other variables

• O(𝑑𝑘) on 𝑘-ary constraint on variables with domains of size 𝑑

• There are other algorithms for non-binary constraint propagation, e.g., (i,j)-
consistency [Freuder, JACM 85]



Summary: CSPs

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• Structure



Learning Objectives

• Describe definition of CSP problems and its connection with general 
search problems

• Formulate a real-world problem as a CSP

• Describe and implement backtracking algorithm

• Define arc consistency

• Describe and implement forward checking and AC-3

• Explain the differences between MRV and LCV heuristics

• Understand the complexity of general binary CSP and tree-structured 
binary CSP



Additional Resources (Not required)

• Demos, exercises: http://aispace.org/

• References
• Zhang, Yuanlin, and Roland HC Yap. "Making AC-3 an optimal algorithm." 

In IJCAI, vol. 1, pp. 316-321. 2001.

• Freuder, Eugene C. "A sufficient condition for backtrack-bounded 
search." Journal of the ACM (JACM) 32, no. 4 (1985): 755-761.

http://aispace.org/

