Announcements

Assignments:

= PO: Python & Autograder Tutorial
= Due Thu9/5, 10 pm

= HW2 (written)
= Due Tue 9/10, 10 pm
= No slip days. Up to 24 hours late, 50 % penalty

= P1:Search & Games
= Due Thu9/12, 10 pm
= Recommended to work in pairs
= Submit to Gradescope early and often

Al: Representation and Problem Solving

Adversarial Search

Instructors: Pat Virtue & Fei Fang
Slide credits: CMU Al, http://ai.berkeley.edu

Outline

History / Overview

Zero-Sum Games (Minimax)
Evaluation Functions

Search Efficiency (a-B Pruning)

Games of Chance (Expectimax)

Game Playing State-of-the-Art

Checkers:
= 1950: First computer player.
= 1959: Samuel’s self-taught program.

= 1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

= 2007: Checkers solved! Endgame database of 39 trillion states
—

Chess:

= 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy. ’ ~

= 1960s onward: gradual improvement under “standard model”

= 1997: special-purpose chess machine Deep Blue defeats human
~champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:

= 1968: Zobrist’s program plays legal Go, barely (b>300!)

= 2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

SoLVED) -

EAPERTY -

HUMAN -1

ABRILCK =

Checkers

Chess

Pacman.

Game Playing State-of-the-Art

Checkers:

1950: First computer player.
1959: Samuel’s self-taught program.

1994: First computer world champion: Chinook ended 40-year-reign
of human champion Marion Tinsley using complete 8-piece
endgame.

2007: Checkers solved! Endgame database of 39 trillion states

Chess:

1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon,
McCarthy.

1960s onward: gradual improvement under “standard model”

1997: special-purpose chess machine Deep Blue defeats human
champion Gary Kasparov in a six-game match. Deep Blue examined
200M positions per second and extended some lines of search up to
40 ply. Current programs running on a PC rate > 3200 (vs 2870 for
Magnus Carlsen).

Go:

1968: Zobrist’s program plays legal Go, barely (b>300!)

2005-2014: Monte Carlo tree search enables rapid advances: current
programs beat strong amateurs, and professionals with a 3-4 stone
handicap.

2015: AlphaGo from DeepMind beats Lee Sedol

SoLVED! +

ERPERY +

HUMAN -1~

ABR\CK =

Checkers

Chess

Pacman

Behavior from Computation

[Demo: mystery pacman (L6D1)]

Types of Games

Many different kinds of games!

AXxes:

= Deterministic or stochastic?

= Perfect information (fully observable)?
" One, two, or more players?

I ——

" Turn-taking or simultaneous?
= Zerosum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

“Standard” Games

Standard games are deterministic, observable,
two-player, turn-taking, zero-sum

Game formulation:

" |nitial state: s,

= Players: Player(s) indicates whose move it is
= Actions: Actions(s) for player on move

=" Transition model: Result(s,a)

=" Terminal test: Terminal-Test(s)

= Terminal values: Utility(s,p) for player p
= Or just Utility(s) for player making the decision at root

/ero-Sum Games

* Zero-Sum Games * General Games
* Agents have opposite utilitie * Agents have independent utilities

* Pure competition: * Cooperation, indifference, competition,
* One maximizes, the other minimizes shifting alliances, and more are all possible

Adversarial Search

Single-Agent Trees

€
/\

T~ T T~
O B B

Minimax

Statei_ MAX (X)
Actions / \
X X X
ValueS MIN (O) X X X
—_— X X X
X[0 X[To] [X
MAX (X) o
x[o/x] [x[o X0
MIN (O) X X
|
x[o[x| [X[o[x] [x[o[x
TERMINAL [[0]X| [0/0[X X
0 X/ X[0| [X/0/o
Utility -1 0 +1

1 O *HI

Minimax

States

Actions

Values € - o

Piazza Poll 1

What is the minimax value at the root?
A) 2
B) 3
C) 6
D) 12
E) 14

Piazza Poll 1

What is the minimax value at the root?

A) 2

Piazza Poll 1

What is the minimax value at the root?
A) 2
B) 3
C) 6
D) 12
E) 14

Minimax Code

Max Code

Max Code

def max_value(state):

if state.is_leaf:
return state.value

! # TODO Also handle depth limit

—>) best_value = -10000000

for action in state.actions:
next_state = state.result(action)

next_value = max_value(next_state)

____——ﬂ
if next_value > best value:

best_value = next_value

e—

return best_value

def

def

Minimax Code

max_value(state):
if state.is_leaf:
return state.value
TODO Also handle depth limit
best value = -10000000

for action in state.actions:
next_state = state.result(action)

next value = min_value(next_state)

enbuuse

it next_value > best value:
best value = next_value

return best_value

min_value(state):

<<

—

Minimax Notation

def max_value(state):
ﬁ

if state.is_leaf:

V(s) = max V(s"),

return state.value y q.o\ I
TODO Also handle depth limit where s_ = result(s, a)
) _ sl=
best_value = -10000000 S SK 5),

for action in state.actions:
next_state = state.result(action)

m—

next value = min_value(next_state)

it next_value > best value:
best value = next_value

return best_value

def min value(state):

Minimax Notation

7 V(s) =maxV(s'),
a
where s’ = result(s, a)

d = argmax V(s'),
a
where s’ = result(s, a)

Generic Game Tree Pseudocode

function minimax_decision(state)

return argmax i, ctate.actions vValue(state.result(a))

P

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max , i, ctate actions Value(state.result(a))

if state.player is MIN
return min . ctate actions Value(state.result(a))

Minimax Efficiency

How efficient is minimax?
= Just like (exhaustive) DFS

* Time: O(b™)

= Space: O(bm)

Example: For chess, b = 35, m = 100 \1
= Exact solution is completely infeasible)
= Humans can’t do this either, so how do a®

we play chess?
" Bounded rationality — Herbert Simon
)

Resource LiImits

Resource LiImits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
= Search only to a preset depth limit or horizon
= Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

—

More plies make a BIG difference
il

Example:
= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move

= For chess, b="35 so reaches about depth 4 — not so good
A

Depth Matters

Evaluation functions are always
imperfect

Deeper search => better play
(usually)

Or, deeper search gives same quality
of play with a less accurate
evaluation function

An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

Demo Limited Depth (2)

Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

Black to move White to move

White slightly better Black winning

ldeal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:
= EVAL(s) =w, T (s) +w,,(s) +....+w T (s)
" Eg.,w, =9, f,(S)=(num white queens —num black queens), etc.

Evaluation for Pacman

Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

Terminals have utility tuples
Node values are also utility tuples

Each player maximizes its own component

Can give rise to cooperation and
competition dynamically...

El 8,8,1
[} 8,8,1 7,7,2
] 0,0,7 8,8,1 7,7,2 0,0,8
1,6 || 0,07 1990|881]990]|]772]]008]|| 007

Generalized minimax

Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs

Game Tree Pruning

Alpha-Beta Example

o = best option so far from any
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

Piazza Poll 2

Which branches are pruned?

(Left to right traversal)
(Select all that apply)

TN

10

50

Piazza Poll 2

Which branches are pruned?
(Left to right traversal)
(Select all that apply)

%/\

éso

Piazza Poll 3

Which branches are pruned?
(Left to right traversal)

A) e,
B) g,

C)g Kk, |
D) g, n

1

/S

/N

100

8

'/

"/

3

20

N

Alpha-Beta Quiz 2

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B): def min-value(state , a, B):
initialize v = -0 initialize v = +o0
for each successor of state: for each successor of state:
v = max(v, value(successor, a, B)) v = min(v, value(successor, a, B))
ifv>P if v<a
return v return v
a = max(a, v) B =min(B, v)

return v return v

Alpha-Beta Quiz 2

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, 3))
ifv>

returnv

o = max(a, v)

return v

Alpha-Beta Quiz 2

a=10
AN
10

b &

10 100
AN fg

10

6

h

sz‘?{p

100

8

a: MAX’s best option on path to root
B: MIN’s best option on path to root

def min-value(state, a, B):
initialize v = +o0
for each successor of state:
v = min(v, value(successor, a, 3))
ifvsa
returnv
B =min(B, v)

return v

Alpha-Beta Pruning Properties

Theorem: This pruning has no effect on minimax value computed for the root!

—= Good child ordering improves effectiveness of pruning

= |terative deepening helps with this
max

With “perfect ordering”:
* Time complexity drops to O(b™2) min
= Doubles solvable depth!

= 1M nodes/move => depth=8, respectable

A 4

10 10 0

This is a simple example of metareasoning (computing about what to compute)

Minimax Demo

Points

+500 win
-500 lose

-1 each move

Fine print
= Pacman: uses depth 4 minimax
= Ghost: uses depth 2 minimax

Piazza Poll 4

How well would a minimax Pacman perform against a
ghost that moves randomly?

A. Better than against a minimax ghost
B. Worse than against a minimax ghost

C. Same as against a minimax ghost

Fine print
" Pacman: uses depth 4 minimax as before
" Ghost: moves randomly

Demo

Assumptions vs. Reality

Minimax Random
Ghost Ghost

Minimax
Pacman

Results from playing 5 games

Modeling Assumptions

Know your opponent

.

O
O

10

10

100

Modeling Assumptions

Know your opponent

10 10 9 100

Modeling Assumptions

Minimax autonomous vehicle?

. N
=0 ~EE S S, Bl .

Image: https://corporate.ford.com/innovation/autonomous-2021.html

Minimax Driver?

Clip: How | Met Your Mother, CBS

Modeling Assumptions

Dangerous Pessimism Dangerous Optimism
Assuming the worst case when it’s not likely Assuming chance when the world is adversarial

Modeling Assumptions

Know your opponent

10 10 9 100

Modeling Assumptions

Chance nodes: Expectimax

10

10

100

Assumptions vs. Reality

Minimax Random
Ghost Ghost
Minimax Won 5/5 Won 5/5
Pacman Avg. Score: 493 Avg. Score: 464
Expectimax
Pacman

Results from playing 5 games

Chance outcomes in trees

10 10 9 100 10 10 9 100
Tictactoe, chess Tetris, investing
10 9

Minimax Expectimax 10|| 9 10| (100

Backgammon, Monopoly
Expectiminimax

Probabilities

Probabilities

A random variable represents an event whose outcome
is unknown

0.25

A probability distribution is an assignment of weights
to outcomes

Example: Traffic on freeway
= Random variable: T = whether there’s traffic
= Qutcomes: T in {none, light, heavy}
= Distribution:
P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) =0.25

Probabilities over all possible outcomes sum to one

Expected Value

Expected value of a function of a random variable:
Average the values of each outcome,
weighted by the probability of that outcome

Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X 35 min
Probability: 0.25 0.50 0.25

S

Expectations

Time: 20 min
X +
Probability: 0.25

Max node notation Chance node notation

V(s) = max V(sh, V(s) =

where s’ = result(s, a)

Expectations

Time: 20 min
X +
Probability: 0.25

A B
S 2

Max node notation Chance node notation
V(s) = max V(s'), V(s) = 2 P(s")V(s)
a
S/

where s’ = result(s, a)

Piazza Poll 5

Expectimax tree search:

Which action do we

choose?

A: Left

B: Center
C: Right
D: Eight

1/4

12

1/4

4
8

Left

Center

Right

1/3

12

Piazza Poll 5

Expectimax tree search:
Which action do we
choose? Left

3+2+2=7

C: Right

1/4 1/2

1/4

oo |«

12

Center

4+3=7

1/2

Right

A+4=8

1/3

12

2/3

Expectimax Pruning?

Expectimax Code

function value(state)
if state.is leaf
return state.value

if state.player is MAX
return Max , i, ctate actions Value(state.result(a))

if state.player is MIN
return min .- ctate actions Value(state.result(a))

if state.player is CHANCE
return sum S in state.next_states P(S) * Value(S)

Preview: MDP/Reinforcement Learning Notation

V(is) = méiXE P(s"V(s"

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz P(s'|s,a)[R(s,a,s") + yV(s')]
a =
Value iteration: Vi+1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qi+1(s,a) = Z P(s'|s,a)[R(s,a,s") + ymax Qi (s’,a")], Vs,a
S/ 4
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a S7
Policy evaluation: Vi .(s) = Z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
S/

Policy improvement: Tpew (8) = argmaxz P(s'|s,a)[R(s,a,s") + yVTold(s")], Vs
a
S

Preview: MDP/Reinforcement Learning Notation

Standard expectimax: V(s) = maxz P(s'|s,a)V(s")
a =
Bellman equations: V(s) = maxz: P(s'|s,a)[R(s,a,s") + yV(s")]
a =
Value iteration: Vis1(s) = maxz P(s'ls,a)[R(s,a,s") +yVi(s))], Vs
a =
Q-iteration: Qr+1(s,a) = z P(s'|s,a)[R(s,a,s") + ymax Q,(s’,a")], Vs,a
a
S/
Policy extraction: my(s) = argmaxz P(s'|s,a)[R(s,a,s") +yV(s')], Vs
a ST
Policy evaluation: Vi ,(s) = z P(s'|s,m(s))[R(s,m(s),s") + yVF(s")], Vs
Y

Policy improvement: Tnew(S) = argmaxz: P(s'|s,a)[R(s,a,s") +yVToud(s")], Vs
a
S/

Why Expectimax?

Pretty great model for an agent in the world
Choose the action that has the: highest expected value

Bonus Question

Let’s say you know that your opponent is actually running a depth 1
minimax, using the result 80% of the time, and moving randomly

otherwise
Question: What tree search should you use?

A: Minimax
B: Expectimax
C: Something completely different

summary

Games require decisions when optimality is impossible
* Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
* Alpha-beta pruning

Game playing has produced important research ideas

= Reinforcement learning (checkers)

" [terative deepening (chess)

= Rational metareasoning (Othello)

= Monte Carlo tree search (Go)

= Solution methods for partial-information games in economics (poker)

Video games present much greater challenges — lots to do!
= b =105, |S|=10%% m =10,000

