
Announcements
Assignments:

▪ P0: Python & Autograder Tutorial

▪ Due Thu 9/5, 10 pm

▪ HW2 (written)

▪ Due Tue 9/10, 10 pm

▪ No slip days. Up to 24 hours late, 50 % penalty

▪ P1: Search & Games

▪ Due Thu 9/12, 10 pm

▪ Recommended to work in pairs

▪ Submit to Gradescope early and often



AI: Representation and Problem Solving

Adversarial Search

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU AI, http://ai.berkeley.edu



Outline

History / Overview

Zero-Sum Games (Minimax)

Evaluation Functions

Search Efficiency (α-β Pruning)

Games of Chance (Expectimax)



Game Playing State-of-the-Art
Checkers:
▪ 1950: First computer player.  

▪ 1959: Samuel’s self-taught program. 

▪ 1994: First computer world champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 8-piece 
endgame. 

▪ 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, 

McCarthy. 

▪ 1960s onward: gradual improvement under “standard model”

▪ 1997: special-purpose chess machine Deep Blue defeats human 
champion Gary Kasparov in a six-game match.  Deep Blue examined 
200M positions per second and extended some lines of search up to 
40 ply.  Current programs running on a PC rate > 3200 (vs 2870 for 
Magnus Carlsen).

Go:
▪ 1968: Zobrist’s program plays legal Go, barely (b>300!)

▪ 2005-2014: Monte Carlo tree search enables rapid advances: current 
programs beat strong amateurs, and professionals with a 3-4 stone 
handicap.



Game Playing State-of-the-Art
Checkers:
▪ 1950: First computer player.  

▪ 1959: Samuel’s self-taught program. 

▪ 1994: First computer world champion: Chinook ended 40-year-reign 
of human champion Marion Tinsley using complete 8-piece 
endgame. 

▪ 2007: Checkers solved! Endgame database of 39 trillion states

Chess:
▪ 1945-1960: Zuse, Wiener, Shannon, Turing, Newell & Simon, 

McCarthy. 

▪ 1960s onward: gradual improvement under “standard model”
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▪ 2015: AlphaGo from DeepMind beats Lee Sedol



Behavior from Computation

[Demo: mystery pacman (L6D1)]



Many different kinds of games!

Axes:
▪ Deterministic or stochastic?

▪ Perfect information (fully observable)?

▪ One, two, or more players?

▪ Turn-taking or simultaneous?

▪ Zero sum?

Want algorithms for calculating a contingent plan (a.k.a. strategy or policy)
which recommends a move for every possible eventuality

Types of Games



“Standard” Games

Standard games are deterministic, observable, 
two-player, turn-taking, zero-sum

Game formulation:
▪ Initial state: s0

▪ Players: Player(s) indicates whose move it is

▪ Actions: Actions(s) for player on move

▪ Transition model: Result(s,a)

▪ Terminal test: Terminal-Test(s)

▪ Terminal values: Utility(s,p) for player p
▪ Or just Utility(s) for player making the decision at root



Zero-Sum Games

• Zero-Sum Games
• Agents have opposite utilities 

• Pure competition: 
• One maximizes, the other minimizes

• General Games
• Agents have independent utilities

• Cooperation, indifference, competition, 
shifting alliances, and more are all possible



Adversarial Search



Single-Agent Trees

8

2 0 2 6 4 6… …



Minimax

States

Actions

Values



Minimax
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Piazza Poll 1

12 8 5 23 2 144 6

What is the minimax value at the root?

A) 2

B) 3

C) 6

D) 12

E) 14
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Minimax Code



Max Code

+8-10-8



Max Code



Minimax Code



Minimax Notation

𝑉 𝑠 = max
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)



𝑎 = argmax
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

ො𝑎 = argmax
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Minimax Notation

𝑉 𝑠 = max
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)



Generic Game Tree Pseudocode

function minimax_decision( state )

return argmax a in state.actions value( state.result(a) )

function value( state )
if  state.is_leaf

return state.value

if  state.player is  MAX
return max a in state.actions value( state.result(a) )

if  state.player is  MIN
return  min a in state.actions value( state.result(a) )



Minimax Efficiency

How efficient is minimax?
▪ Just like (exhaustive) DFS

▪ Time: O(bm)

▪ Space: O(bm)

Example: For chess, b  35, m  100
▪ Exact solution is completely infeasible

▪ Humans can’t do this either, so how do 
we play chess?

▪ Bounded rationality – Herbert Simon



Resource Limits



Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution 1: Bounded lookahead
▪ Search only to a preset depth limit or horizon
▪ Use an evaluation function for non-terminal positions

Guarantee of optimal play is gone

More plies make a BIG difference

Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ For chess, b=~35 so reaches about depth 4 – not so good ? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Depth Matters

Evaluation functions are always 
imperfect

Deeper search => better play 
(usually)

Or, deeper search gives same quality 
of play with a less accurate 
evaluation function

An important example of the 
tradeoff between complexity of 
features and complexity of 
computation

[Demo: depth limited (L6D4, L6D5)]



Demo Limited Depth (2)



Demo Limited Depth (10)



Evaluation Functions



Evaluation Functions
Evaluation functions score non-terminals in depth-limited search

Ideal function: returns the actual minimax value of the position

In practice: typically weighted linear sum of features:
▪ EVAL(s) = w1 f1(s) + w2 f2(s) + …. + wn fn(s)
▪ E.g., w1 = 9,  f1(s) = (num white queens – num black queens), etc.



Evaluation for Pacman



Generalized minimax

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:
▪ Terminals have utility tuples
▪ Node values are also utility tuples
▪ Each player maximizes its own component
▪ Can give rise to cooperation and

competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1



Generalized minimax

Three Person Chess

https://www.youtube.com/watch?v=HHVPutfveVs


Game Tree Pruning



Minimax Example

12 8 5 23 2 144 6

3 2 2

3



Alpha-Beta Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any 
MAX node on this path

The order of generation matters: more pruning
is possible if good moves come first

3

3



Piazza Poll 2
Which branches are pruned?
(Left to right traversal)
(Select all that apply)



Piazza Poll 3

Which branches are pruned?
(Left to right traversal)
A) e, l
B) g, l
C) g, k, l
D) g, n



1

Alpha-Beta Quiz 2

?

10

?

?

10

10 100

?

?

2

2

?

β =

α =

α= α= α=

β =



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Quiz 2

10 v=100

β = 10

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Quiz 2

10

10 100 2

v = 2

α = 10
def min-value(state , α, β):

initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Pruning Properties
Theorem: This pruning has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning
▪ Iterative deepening helps with this

With “perfect ordering”:
▪ Time complexity drops to O(bm/2)

▪ Doubles solvable depth!

▪ 1M nodes/move => depth=8, respectable

This is a simple example of metareasoning (computing about what to compute)

10 10 0

max

min



Minimax Demo

Fine print
▪ Pacman: uses depth 4 minimax
▪ Ghost: uses depth 2 minimax

Points

+500 win

-500 lose

-1 each move



How well would a minimax Pacman perform against a

ghost that moves randomly?

A. Better than against a minimax ghost

B. Worse than against a minimax ghost

C. Same as     against a minimax ghost

Piazza Poll 4

Fine print
▪ Pacman: uses depth 4 minimax as before
▪ Ghost: moves randomly



Demo



Assumptions vs. Reality

Minimax
Ghost

Random
Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 493

Won 5/5

Avg. Score: 464

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games



Modeling Assumptions

Know your opponent

10091010



Modeling Assumptions

Know your opponent

10091010



Modeling Assumptions
Minimax autonomous vehicle?

Image: https://corporate.ford.com/innovation/autonomous-2021.html



Clip: How I Met Your Mother, CBS

Minimax Driver?



Modeling Assumptions

Dangerous Optimism
Assuming chance when the world is adversarial

Dangerous Pessimism
Assuming the worst case when it’s not likely



Modeling Assumptions

Know your opponent

10091010



Modeling Assumptions

Chance nodes: Expectimax

10091010



Assumptions vs. Reality

Minimax 
Ghost

Random
Ghost

Minimax
Pacman

Won 5/5
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Results from playing 5 games



Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax



Probabilities



Probabilities

A random variable represents an event whose outcome 
is unknown

A probability distribution is an assignment of weights 
to outcomes

Example: Traffic on freeway
▪ Random variable: T = whether there’s traffic
▪ Outcomes: T in {none, light, heavy}
▪ Distribution:

P(T=none) = 0.25,  P(T=light) = 0.50,  P(T=heavy) = 0.25

Probabilities over all possible outcomes sum to one

0.25

0.50

0.25



Expected value of a function of a random variable:

Average the values of each outcome, 

weighted by the probability of that outcome

Example: How long to get to the airport?

Expected Value

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
35 minx x x+ +



Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

𝑉 𝑠 = max
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation 

𝑉 𝑠 =

0.25

0.5

0.25



Expectations

0.25 0.50 0.25Probability:

20 min 30 min 60 minTime:
x x x+ +

6020 30

0.25

0.5

0.25

𝑉 𝑠 = max
𝑎

𝑉 𝑠′ ,

where 𝑠′ = 𝑟𝑒𝑠𝑢𝑙𝑡(𝑠, 𝑎)

Max node notation Chance node notation 

𝑉 𝑠 =෍

𝑠′

𝑃 𝑠′ 𝑉(𝑠′)



Piazza Poll 5

Expectimax tree search:
Which action do we 
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right



Piazza Poll 5

Expectimax tree search:
Which action do we 
choose?

A: Left
B: Center
C: Right
D: Eight

412 8 8 6 12 6

1/4

1/4

1/2 1/2 1/2 1/3 2/3

Left
Center

Right

4+3=73+2+2=7 4+4=8

8, Right



Expectimax Pruning?

12 93 2



Expectimax Code

function value( state )
if  state.is_leaf

return  state.value

if  state.player is  MAX
return max a in state.actions value( state.result(a) )

if  state.player is  MIN
return  min a in state.actions value( state.result(a) )

if  state.player is  CHANCE
return  sum s in state.next_states P( s ) * value( s )



𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃(𝑠′) 𝑉(𝑠′)

Preview: MDP/Reinforcement Learning Notation



Preview: MDP/Reinforcement Learning Notation

Standard expectimax: 𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 = ෍

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

෍

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy evaluation:

Policy improvement:
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Why Expectimax?

Pretty great model for an agent in the world

Choose the action that has the: highest expected value



Bonus Question
Let’s say you know that your opponent is actually running a depth 1 
minimax, using the result 80% of the time, and moving randomly 
otherwise

Question: What tree search should you use?  

A: Minimax

B: Expectimax

C: Something completely different



Summary
Games require decisions when optimality is impossible
▪ Bounded-depth search and approximate evaluation functions

Games force efficient use of computation
▪ Alpha-beta pruning

Game playing has produced important research ideas
▪ Reinforcement learning (checkers)

▪ Iterative deepening (chess)

▪ Rational metareasoning (Othello)

▪ Monte Carlo tree search (Go)

▪ Solution methods for partial-information games in economics (poker)

Video games present much greater challenges – lots to do!
▪ b = 10500, |S| = 104000, m = 10,000


