Warm-up: DFS Graph Search

In HW1 Q4.1, why was the answer S->C->G,
not S->A->C->G?

After all, we were doing DFS and breaking
ties alphabetically.

Al: Representation and Problem Solving

Informed Search

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU Al, http://ai.berkeley.edu

Announcements

Assignments:

= HWa1 (online)
= Due tonight, 10 pm

= PO: Python & Autograder Tutorial
= DueThu9/5, 10 pm

= P1:Search & Games
= Due Thu9/12, 10 pm

= HW2 (written)
= Due Tue 9/10, 10 pm
= No slip days! Up to 24 hours late, 50 % penalty

Announcements

Who'’s lecturing?
" Prof. Virtue this week
" Prof. Fang next week

A Note on CS Education

Formative vs Summative Assessment

= https://www.cmu.edu/teaching/assessment/basics/formative-
summative.html

https://www.cmu.edu/teaching/assessment/basics/formative-summative.html

Warm-up: DFS Graph Search

In HW1 Q4.1, why was the answer S->C->G,
not S->A->C->G?

After all, we were doing DFS and breaking
ties alphabetically.

%E%P 5 A B C

Flont X %%5/’;(_
St

TREE_SEARCH(problem) a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution

for each resulting child from node
add child to the frontier

GRAPH_SEARCH(problem) a solution, or failure
initialize the explored set to be empty °
initialize the frontier as a specific work list (stack, queue, priority queue)
add initial state of problem to frontier 0

the frontier is empty

failure
choose a node and remove it from the frontier ° o
the node contains a goal state
the corresponding solution e
add the node state to the explored set

for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier

UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the explored set to be empty

initialize the frontier as a priority queue using node path_cost as the prio/:?ityg
4=

add initial state of problem to frontier with path_cost =0

the frontier is empty
failure

choose a node and remove it from the frontier

the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
—> [—;Ise if the child is already in the frontier with higher path_cost
replace that frontier node with child

Recall: Breadth-First Search (BFS) Properties

What nodes does BFS expand?
= Processes all nodes above shallowest solution

= Let depth of shallowest solution be s b 1 node
= Search takes time O(b?) . b nodes
s tiers <
/ b? nodes
How much space does the frontier take? / \
= Has roughly the last tier, so O(b°) - O b* nodes
@)
Is it complete? / \
® b™ nodes

= s must be finite if a solution exists, so yes!

Is it optimal?
= Only if costs are all the same (more on costs later)

Size/cost of Search Trees

See Piazza post:
https://piazza.com/class/jyuj6a88afh5u7?cid=30

https://piazza.com/class/jyuj6a88afh5u7?cid=30

Recall: Breadth-First Search (BFS) Properties

What nodes does BFS expand?
= Processes all nodes above shallowest solution

= Let depth of shallowest solution be s
= Search takes time O(b®)

How much space does the frontier take? ;
= Has roughly the last tier, so O(b®) s tiers < /

L/
/)
@

A\

\

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?
" Processes all nodes with cost less than cheapest solution

= |f that solution costs C* and step costs are at least ¢, then
the “effective depth” is roughly C*/¢

= Takes time O(b®"4) (exponential in effective depth)

How much space does the frontier take?
= Has roughly the last tier, so O(b©™¢) C*/e “tiers” y

Is it complete?

= Assuming best solution has a finite cost and minimum step
cost is positive, yes!

Is it optimal?
" Yes! (Proof via A*)

Uniform Cost Issues

Strategy:

" Explore (expand) the lowest path cost
on frontier

The good:
= UCS is complete and optimal!

The bad:
* Explores options in every “direction” & Goal

= No information about goal location

We'” f|X that todayl [Demo: contours UCS empty (L3D1)]

[Demo: contours UCS pacman small maze (L3D3)]

Demo Contours UCS Empty

Demo Contours UCS Pacman Small Maze

Uninformed vs Informed Search

Today

Informed Search
= Heuristics

—=# Greedy Search
= A* Search

Informed Search

Search Heuristics

A heuristic is:

= A function that estimates how close a state is to a goal

" Designed for a particular search problem

= Examples: Manhattan distance, Euclidean distance for
pathing

“—

£y

e —

Heuriski = Tron

Example: Euclidean distance to Bucharest

[1 Oradea

Zerind 151

75
Ara c \
Sibiu 99 Fagaras
118
80
. . Rimnicu Vilcea
Timisoara ™
111] Lllng Pitesti
[|
70
[1 Mehadia
75 138
Drobeta [| 120
[|
Craiova

d Iasi

92

L Vaslui

142

98

Urziceni

Neamt
[|
87
211
Ny
Bucharest
90

] Giurgiu

-

ra
Bucharest
Craiova
Drobeta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

N

366

160
242
161
176

77
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui
Zerind

234
380
100
193
253
329

80
199

Hirsova

86

Eforie

h(state) = value

Effect of heuristics

Guide search towards the goal instead of all over the place

StarGoaI Stz@ Goal

Informed Uninformed

Greedy Search

Greedy Search

Expand the node that seems closest...(order frontier by h)

What can possibly go wrong?

Sibiu-Fagaras-Bucharest =

09+211 = .3£
Sibiu-Rimnicu Vilcea-Pitesti-Bucharest =
80+97+101 = 278

Greedy Search

A b
Strategy: expand a node that seems closest to a
goal state, according to h

Problem 1: it chooses a node even if it’s at the

end of a very long and winding road

Problem 2: it takes h literally even if it’s
completely wrong

Demo Contours Greedy (Empty)

Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

7[5\3-” I (“} i L(ﬂ)

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

Is A* Optimal?

{54 = 1+4=7

1(5-6)=3+0

What went wrong?
Actual bad goal cost < estimated good goal cost

= \We need estimates to be less than actual costs!

The Price is Wrong...

Closest bid without going over...

https://www.youtube.com/watch?v=9B0ZKRurC5Y

Admissible Heuristics

Admissible Heuristics

A heuristic his admissible (optimistic) if:

‘0 <h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

Example:

Coming up with admissible heuristics is most of
what’s involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

A is an optimal goal node
B is a suboptimal goal node
h is admissible

Claim:

A will be chosen for exploration (popped off the frontier) before B

Optimality of A* Tree Search: Blocking NAYANA

n

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)

Claim: n will be explored before B

1. f(n) is less than or equal to f(A)
N §

S~

f(n) = g(n) + h(n) Definition of f-cost
—>» f(n) <g(A) Admissibility of hj
g(A) = f(A) h =0 at a goal

/

= A
Optimality of A* Tree Search: Blocking 09~ 9 4l ()

O
Proof:
Imagine B is on the frontier
Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)
Claim: n will be explored before B
1. f(n) is less than or equal to f(A)
2. f(A)is less than f(B) N
g(A) < g(B) Suboptimality of B

f(A) < f(B) h =0 at a goal

)

Optimality of A* Tree Search: Blocking

Proof:
Imagine B is on the frontier

Some ancestor n of A is on the frontier, too
(Maybe the start state; maybe A itself!)
Claim: n will be explored before B

1. f(n) is less than or equal to f(A)

2. f(A)is less than f(B)

3. nis explored before B

All ancestors of A are explored before B

A is explored before B

A* search is optimal

Properties of A*

Uniform-Cost

b

UCS vs A* Contours
Uniform-cost expands equally in all
“directions” @
Sta Goal

A* expands mainly toward the goal,

but does hedge its bets to ensure
optlmallty Start Goal

Demo Contours (Empty) -- UCS

Demo Contours (Empty) — A*

Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost

Demo Empty Water Shallow/Deep — Guess Algorithm

A* Search Algorithms

A* Tree Search

= Same tree search algorithm as before but with a frontier that is a
priority queue using priority f(n) = g(n) + h(n)

A* Graph Search
= Same as UCS graph search algorithm but with a frontier that is a

[Y

priority queue using priority f(n) = g(n) + h(n)

UNIFORM-COST-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using g(n) as the priority

—

add initial state of problem to frontier with priority g(S) =0

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher g(n)

S

replace that frontier node with child

A-STAR-SEARCH(problem) a solution, or failure
initialize the explored set to be empty
initialize the frontier as a priority queue using f(n) = g(n) + h(n) as the priority

a———

add initial state of problem to frontier with priority f(S) = 0 + h(S)

the frontier is empty
failure
choose a node and remove it from the frontier
the node contains a goal state
the corresponding solution
add the node state to the explored set
for each resulting child from node
if the child state is not already in the frontier or explored set
add child to the frontier
else if the child is already in the frontier with higher f(n)

replace that frontier node with child

A* Applications B

Pathing / routing problems ~ *** — O o Do
Resource planning problems e —

Robot motion planning
Language analysis
Video games

S yorsiuud

Parigh Ln

'),?0

3
o
SQUIRREL 2
HILL NORTH 3

Bellerock St

Solway St

1S ueunybIMm

ony Aeunin

< s
% Ferreé St %
2:“2 Ay\esborofAve
Machine translation : |
A Bob O'Connor Golf l-fmiies
SN \ Everyday.Noodles
I N Course at Schenley Park
Speech recognition o

Image: maps.google.com

.~ “0\3\'“\)8 g

Creating Heuristics

YOU GOT

HEURISTIL
UFGRADE!

Creating Admissible Heuristics

Most of the work in solving hard search problems optimally is in
coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed problems, where
new actions are available

Example: 8 Puzzle

7 2 |4 371
> 6/ [1) 12/4|5
83 1 i8N 6 7

Start State Actions Goal State

12
|5

3
&

What are the states? o

How many states?

What are the actions?

How many actions from the start state?
What should the step costs be?

S Puzzle |

Heuristic: Number of tiles misplaced
Why is it admissible?

h(start) =

This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded when
the optimal path has...

...4 steps |..8 steps |...12 steps

UCS

112 6,300 3.6 x 10°

A*TILES

13 39 227

Statistics from Andrew Moore

S Puzzle |l

What if we had an easier 8-puzzle
where any tile could slide any
direction at any time, ignoring
other tiles?

. Start Stat
Total Manhattan distance art State Goal State

Average nodes expanded when

Why is it admissible? the optimal path has...
...4 steps |...8 steps |...12 steps
A*TILES 13 39 227

h(start) =3 +1+2+..=18

A*MANHATTAN 12 25 73

Combining heuristics

Dominance: h, 2 h_if
Vn h,(n)=h(n)
= Roughly speaking, larger is better as long as both are admissible
" The zero heuristic is pretty bad (what does A* do with h=07)
" The exact heuristic is pretty good, but usually too expensive!

What if we have two heuristics, neither dominates the other?
= Form a new heuristic by taking the max of both:
h(n) =max(h,(n), h,(n))
= Max of admissible heuristics is admissible and dominates both!

Optimality of A* Graph Search

A* Tree Search

State space graph

Search tree

S (0+2)

N

A (1+4)5 C(3+1) 3

v v
C(2+1)3 G (6+0)6

'
G (5+0)5

Piazza Poll: A* Graph Search

What paths does A* graph search consider
during its search?

A) .S, SA, S-C, S-C-G

B) .S, S-A, S-C, S-A-C, S-C-G
C) S,S-A, S-A-C, S-A-C-G

D) .S, S-A,S-C, S-A-C, S-A-C-G

Piazza Poll: A* Graph Search

What paths does A* graph search consider
during its search?

h=4 A) .S, S-A, S-C, S-C-G

h

0

What does the resulting graph tree look like?

h=4

e
A* Graph Search Al 5
(A)
S

A* Graph Search Gone Wrong?

State space graph Search tree

h=4 S (0+2)
P /\
A (1+4) C (3+1)

h=2 3 v
3 G (6+0)

@ Simple check against explored set blocks C

Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

S
I

Admissibility of Heuristics
Main idea: Estimated heuristic values < actual costs
= Admissibility:
heuristic value < actual cost to goal
h(A) < actual cost from A to G

Consistency of Heuristics
Main idea: Estimated heuristic costs < actual costs
= Admissibility:
heuristic cost < actual cost to goal
h(A) < actual cost from A to G
= Consistency:
“heuristic step cost” < actual cost for each step
h(A) — h(C) < cost(A to C)
triangle inequality
h(A) < cost(A to C) + h(C)

Consequences of consistency:

" The f value along a path never decreases
= A* graph search is optimal

Optimality of A* Graph Search

Sketch: consider what A* does with a
consistent heuristic:

" Fact 1: In tree search, A* expands nodes
in increasing total f value (f-contours)

" Fact 2: For every state s, nodes that
reach s optimally are explored before
nodes that reach s suboptimally

" Result: A* graph search is optimal

Optimality

Tree search:
" A* is optimal if heuristic is admissible
=" UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

A*: Summary

A*: Summary

A* uses both backward costs and (estimates of) forward costs
A* is optimal with admissible / consistent heuristics

Heuristic design is key: often use relaxed problems

