
Warm-up as you walk in
Write the pseudo code for breadth first search and depth first search

▪ Iterative version, not recursive

class TreeNode

TreeNode[] children()

boolean isGoal()

BFS(TreeNode start)…

DFS(TreeNode start)…

Announcements
If you are not on Piazza, Gradescope, and Canvas

▪ E-mail us: feifang@cmu.edu, pvirtue@cmu.edu

Recitation starting this Friday

▪ Choose your section; priority based on registered section

▪ Bring laptop if you can (not required)

▪ Start P0 before recitation to make sure Python 3.6 is working for
you!

In-class Piazza Polls

mailto:feifang@cmu.edu
mailto:pvirtue@cmu.edu

Announcements
Assignments:

▪ HW1 (online)

▪ Due Tue 9/3, 10 pm

▪ P0: Python & Autograder Tutorial

▪ Due Thu 9/5, 10 pm

▪ No pairs, submit individually

▪ P1: Search and Games

▪ Released after lecture

▪ Due Thu 9/12, 10 pm

▪ May be done in pairs

Remaining programming assignments may be done in pairs

AI: Representation and Problem Solving

Agents and Search

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU AI, http://ai.berkeley.edu

Today

Agents and Environment

Search Problems

Uninformed Search Methods

▪ Depth-First Search

▪ Breadth-First Search

▪ Uniform-Cost Search

Rationality, contd.

What is rational depends on:
▪ Performance measure

▪ Agent’s prior knowledge of environment

▪ Actions available to agent

▪ Percept sequence to date

Being rational means maximizing your expected utility

Rational Agents
Are rational agents omniscient?
▪ No – they are limited by the available percepts

Are rational agents clairvoyant?
▪ No – they may lack knowledge of the environment dynamics

Do rational agents explore and learn?
▪ Yes – in unknown environments these are essential

So rational agents are not necessarily successful, but they are
autonomous (i.e., transcend initial program)

Task Environment - PEAS

Performance measure

▪ -1 per step; +10 food; +500 win; -500 die;
+200 hit scared ghost

Environment

▪ Pacman dynamics (incl ghost behavior)

Actuators

▪ North, South, East, West, (Stop)

Sensors

▪ Entire state is visible

PEAS: Automated Taxi

Performance measure
▪ Income, happy customer, vehicle costs, fines,

insurance premiums

Environment
▪ US streets, other drivers, customers

Actuators
▪ Steering, brake, gas, display/speaker

Sensors
▪ Camera, radar, accelerometer, engine sensors,

microphone

Image: http://nypost.com/2014/06/21/how-google-might-put-taxi-drivers-out-of-business/

Environment Types

Pacman Taxi

Fully or partially observable

Single agent or multi-agent

Deterministic or stochastic

Static or dynamic

Discrete or continuous

Reflex Agents

Reflex agents:
▪ Choose action based on current percept

(and maybe memory)

▪ May have memory or a model of the
world’s current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Demo Reflex Agent

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Agents that Plan Ahead

Planning agents:
▪ Decisions based on predicted consequences of actions

▪ Must have a transition model: how the world evolves
in response to actions

▪ Must formulate a goal

▪ Consider how the world WOULD BE

Spectrum of deliberativeness:
▪ Generate complete, optimal plan offline, then execute

▪ Generate a simple, greedy plan, start executing, replan
when something goes wrong

Search Problems

Search Problems

A search problem consists of:

▪ A state space

▪ For each state, a set
Actions(s) of allowable actions

▪ A transition model Result(s,a)

▪ A step cost function c(s,a,s’)

▪ A start state and a goal test

A solution is a sequence of actions (a plan) which transforms
the start state to a goal state

N

E

{N, E}
1

1

Search Problems Are Models

Example: Travelling in Romania

State space:
▪ Cities

Actions:
▪ Go to adjacent city

Transition model
▪ Result(A, Go(B)) = B

Step cost
▪ Distance along road link

Start state:
▪ Arad

Goal test:
▪ Is state == Bucharest?

Solution?
Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

What’s in a State Space?

• Problem: Pathing
• State representation: (x,y) location

• Actions: NSEW

• Transition model: update location

• Goal test: is (x,y)=END

• Problem: Eat-All-Dots
• State representation: {(x,y), dot booleans}

• Actions: NSEW

• Transition model: update location and
possibly a dot boolean

• Goal test: dots all false

The real world state includes every last detail of the environment

A search state abstracts away details not needed to solve the problem

State Space Sizes?

World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

How many
▪ World states?

120x(230)x(122)x4

▪ States for pathing?

120

▪ States for eat-all-dots?

120x(230)

Safe Passage

Problem: eat all dots while keeping the ghosts perma-scared

What does the state representation have to specify?
▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent transitions resulting from actions

▪ The goal test is a set of goal nodes (maybe only one)

In a state space graph, each state occurs only
once!

We can rarely build this full graph in memory (it’s
too big), but it’s a useful idea

More Examples

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

More Examples
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

S

a b

G G ab

G a Gb

∞

Tree Search vs Graph Search

function TREE_SEARCH(problem) returns a solution, or failure

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

for each resulting child from node

add child to the frontier

function GRAPH_SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier

Piazza Poll 1
What is the relationship between these sets of states
after each loop iteration in GRAPH_SEARCH?

(Loop invariants!!!)

A
Explored Never Seen

Frontier

B
Explored Never Seen

Frontier

C
Explored Never Seen

Frontier

Piazza Poll 1
function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier

Graph Search
This graph search algorithm overlays a tree on a graph

The frontier states separate the explored states from never seen states

Images: AIMA, Figure 3.8, 3.9

BFS vs DFS

Piazza Poll 2
Is the following demo using BFS or DFS

[Demo: dfs/bfs maze water (L2D6)]

A Note on Implementation

Nodes have

state, parent, action, path-cost

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

A child of node by action a has

state = result(node.state,a)

parent = node

action = a

path-cost = node.path_cost +
step_cost(node.state, a, self.state)

Extract solution by tracing back parent pointers, collecting actions

Walk-through DFS Graph Search

S

G

d

b

p
q

c

e

h

a

f

r

BFS vs DFS

When will BFS outperform DFS?

When will DFS outperform BFS?

Search Algorithm Properties

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Are these the properties for BFS or DFS?

▪ Takes O(bm) time

▪ Uses O(bm) space on frontier

▪ Complete with graph search

▪ Not optimal unless all goals are in the same level
(and the same step cost everywhere)

Piazza Poll 3

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

What nodes does DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

How much space does the frontier take?
▪ Only has siblings on path to root, so O(bm)

Is it complete?
▪ m could be infinite, so only if we prevent cycles

(graph search)

Is it optimal?
▪ No, it finds the “leftmost” solution, regardless of

depth or cost

Breadth-First Search (BFS) Properties

What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

How much space does the frontier take?
▪ Has roughly the last tier, so O(bs)

Is it complete?
▪ s must be finite if a solution exists, so yes!

Is it optimal?
▪ Only if costs are all the same (more on costs later)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

Isn’t that wastefully redundant?
▪ Generally most work happens in the lowest level

searched, so not so bad!

Finding a Least-Cost Path

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Depth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Breadth-First (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO queue

Uniform Cost (Tree) Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a cheapest
node first:

Frontier is a priority queue
(priority: cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost
contours

2

Uniform Cost Search

function GRAPH_SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a specific work list (stack, queue, priority queue)

add initial state of problem to frontier

loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

initialize the explored set to be empty

initialize the frontier as a priority queue using node path_cost as the priority

add initial state of problem to frontier with path_cost = 0

loop do

if the frontier is empty then

return failure

choose a node and remove it from the frontier

if the node contains a goal state then

return the corresponding solution

add the node state to the explored set

for each resulting child from node

if the child state is not already in the frontier or explored set then

add child to the frontier

else if the child is already in the frontier with higher path_cost then

replace that frontier node with child

S

A

B

C

D

G

1

4

2

4

1

3

Walk-through UCS

S

A

B

C

D

G

1

4

2

4

1

3

Walk-through UCS

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

…

Uniform Cost Search (UCS) Properties
What nodes does UCS expand?

▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

How much space does the frontier take?

▪ Has roughly the last tier, so O(bC*/)

Is it complete?

▪ Assuming best solution has a finite cost and minimum arc
cost is positive, yes!

Is it optimal?

▪ Yes! (Proof next lecture via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

Remember:

▪ UCS explores increasing cost contours

The good:

▪ UCS is complete and optimal!

The bad:
▪Explores options in every “direction”
▪No information about goal location

We’ll fix that soon!

Start Goal

…

c  3

c  2

c  1

