Warm up

» Pick an agent among {Pacman, Blue Ghost, Red
Ghost}. Design an algorithm to control your agent.
Assume they can see each others’ location but can’t
talk. Assume they move simultaneously in each step.

Announcement

» Assignments

HWI2 (written) due—2M4-"Wed+0pm—
Due 12/6 Fri, 10 pm

» Final exam
12/12 Thu, | pm-4pm

» Piazza post for in-class questions

Al: Representation and Problem Solving

Multi-Agent Reinforcement Learning

Instructors: Fei Fang & Pat Virtue
Slide credits: CMU Al and http://ai.berkeley.edu

Learning objectives

» Compare single-agent RL with multi-agent RL
» Describe the definition of Markov games
» Describe and implement
Minimax-Q algorithm
Fictitious play
» Explain at a high level how fictitious play and double-oracle

framework can be combined with single-agent RL algorithms
for multi-agent RL

Single-Agent — Multi-Agent

» Many real-world scenarios have more than one agent!

Autonomous driving

Single-Agent — Multi-Agent

» Many real-world scenarios have more than one agent!

Autonomous driving

Humanitarian Assistance / Disaster Response

Single-Agent — Multi-Agent

» Many real-world scenarios have more than one agent!
Autonomous driving
Humanitarian Assistance / Disaster Response

Entertainment

Single-Agent — Multi-Agent

» Many real-world scenarios have more than one agent!
Autonomous driving
Humanitarian Assistance / Disaster Response

Entertainment

Infrastructure security / green security / cyber security

Single-Agent — Multi-Agent

» Many real-world scenarios have more than one agent!
Autonomous driving

Humanitarian Assistance / Disaster Response
Entertainment

Infrastructure security / green security / cyber security
Ridesharing

rrrrrrr
Rockridge Improvement Club
- iy

SROUKR]
0

(24

Recall: Normal-Form/Extensive-Form games

» Games are specified by
Set of players
Set of actions for each player (at each decision point)
Payoffs for all possible game outcomes

(Possibly imperfect) information each player has about the
other player's moves when they make a decision

» Solution concepts

Nash equilibrium, dominant strategy equilibrium,
Minimax/Maximin strategy, Stackelberg equilibrium

» Approaches to solve the game

Iterative removal, Solving linear systems, Linear programming

Single-Agent — Multi-Agent

» Can we use these approaches to previous problems?

Berry
Football | Concert
>
< | Football 2,1 0,0
Concert 0,0 [,2

» Limitations of classic approaches in game theory
Scalability: Can hardly handle complex problems
Need to specify payoff for all outcomes

Often need domain knowledge for improvement (e.g.,
abstraction)

Recall: Reinforcement learning

» Assume a Markov decision process (MDP):
A set of statess € S
A set of actions (per state) A
A model T(s,a,s’)

A reward function R(s,a,s’)
» Looking for a policy t(s) without knowing T or R

» Learn the policy through experience in the environment

Single-Agent — Multi-Agent

» Can we apply single-agent RL to previous problems? How!?

Simultaneously independent single-agent RL, i.e., let every
agent [use Q-learning to learn Q (s, a;) at the same time

Effective only in some problems (limited agent interactions)
Limitations of single-agent RL in multi-agent setting
Instability and adapatability: Agents are co-evolving

& & #* * #* #»

* L L L * L L L

If treat other agents as part of
. environment, this environment
d . is changing over time!

{nln

Single-Agent — Multi-Agent

» Multi-Agent Reinforcement Learning

Let the agents learn through interacting with the
environment and with each other

Simplest approach: Simultaneously independent single-agent
RL (suffer from instability and adapatability)

Need better approaches

* * * * * * L]
"

*® & & & % % & =

*

b .

nln}

Multi-Agent Reinforcement Learning

» Assume a Markov game:
A set of N agents
A set of states S
Describing the possible configurations for all agents
A set of actions for each agent A4, ..., Ay
A transition function T (s, a4, a,, ...,a,,s")

Probability of arriving at state s’ after all the agents taking
actions a4, a,, ..., a, respectively

A reward function for each agent R;(s, a4, a,, ..., a,)

Piazza Poll |

» You know that the state at time ¢ is s; and the
actions taken by the players at time tis a; ¢, ..., a¢ y.

The reward for agent i at time t + 1 is dependent on
which factors?

A: s;

B: at,i

Cias_; £ azq,
D: None

E: |l don’t know

. at,i_l, at,i+1' e at,N

Multi-Agent Reinforcement Learning

» Assume a Markov game

» Looking for a set of policies {m;}, one for each agent,
without knowing T, R;, Vi
1; (s, a) is the probability of choosing action a at state s

» Each agent’s total expected returnis)., y* 1;" where
y is the discount factor

» Learn the policies through experience in the
environment and interact with each other

Multi-Agent Reinforcement Learning

» Descriptive

What would happen if agents learn in a certain way?
Propose a model of learning that mimics learning in real life

Analyze the emergent behavior with this learning model
(expecting them to agree with the behavior in real life)

|dentify interesting properties of the learning model

https://youtu.be/kopoLzvh5jY
https://youtu.be/kopoLzvh5jY

Multi-Agent Reinforcement Learning

» Prescriptive (our main focus today)
How agents should learn?
Not necessary to show a match with real-world phenomena

Design a learning algorithm to get a “good” policy
(e.g., high total reward against a broad class of other agents)

g
R0 W] 158 s

DeepMind's AlphaStar beats 99.8% of human

https://youtu.be/6eiErYh_FeY
https://youtu.be/6eiErYh_FeY

Recall:Value Iteration and Bellman Equation

» Value iteration
Viera () = max) P(s'ls,)[R(s,a ") + ¥Vie(s)], Vs
a
S/
» With reward function R(s, a)

Vk+1(S) — maXR(S)a) +V E P(Slls, a)Vk(S’),VS
a
S/

» When converges (Bellman Equation)

V*(s) = max Q*(s,a),Vs

Q*(s,a) = R(s,a) + yZ P(s'ls,a)V*(s"),Va,s

20

Value Iteration in Markov Games
V*(s) =maxQ*(s,a),Vs
a

Q*(s,a) = R(s,a) + yz: P(s'ls,a)V*(s"),Va,s

» In two-player zero-sum Markov game
Let V*(s) be state value for player | (—V*(s) for player 2)

Let Q*(s, a4, a,) be action-state value for player | when
1, a2 play
player | chooses a; and player 2 chooses a, in state s

Q*(s,ay,a;) =

V*(s) =

21

Minimax-Q Algorithm

» Value iteration requires knowing T, R;

» Minimax-Q [Littman94]

Extension of Q-learning
For two-player zero-sum Markov games

Provably converges to Nash equilibria in self play

/

A learning agent learns through interacting
with another learning agent using the same
learning algorithm

23

Minimax-Q Algorithm

Initialize Q(s,aq,a,) <« 1L,V(s) « 1,m,(s,a,) < IA_ll’ a1
1

Take actions: At state s, with prob. € choose a random action, and
with prob. 1 — € choose action according to (s, a)

Learn: after receiving r; for moving from s to s’ via a4, a,

Q(s,ay,a;) « (1 —a)Q(s,aq,a;) + “(7”1 + VV(S’))

m1(s,”) « argmax min E m1(s,a,)Q(s,a,a,)
! a2€A2
(s,)EA(A1) a,€4,

V(s) « min 2 1,(s,a,)0(s, @y, az)
azeAz
a1€A1

Update «

24

Minimax-Q Algorithm

» How to solve the maximin problem!?

m.(s,)) « argmax min Z m1(s,a,)Q(s,aq,a,)
w1 (s)En(ay) 242 Lt

V() « min > mi(s,a)Q(s,a1,02)

a€Ay
a1€A1

Linear Programming: nﬁ(lf))(v v
1 ')

Get optimal solution {*(s,"), v*, update m,(s,") < m{"(s,"),V(s) « v*

26

Minimax-Q Algorithm

» How does player 2 chooses action a,!?
» If player 2 is also using the minimax-Q algorithm
Self-play

Proved to converge to NE

» If player 2 chooses actions uniformly randomly, the algorithm
still leads to a good policy empirically in some games

28

Minimax-Q for Matching Pennies

» A simple Markov game: Repeated Matching Pennies
Player 2

Heads Tails

Heads -1 -1,

Player |

Tails -1, [,-|

» Let state to be dummy: Player’s strategy is not
dependent on past actions. Just play a mixed strategy
as in the one-shot game

» Discount factor y = 0.9

29

Heads

Tails

Heads [,-1

-1,1

Minimax-Q for Matching Pennies

Tails -1,

l,-1

Simplified version for this games with only one state
Initialize Q(aq,a,) <« 1,V « 1,my(a;) < 0.5, « 1

Take actions:With prob. € choose a random action, and with
prob. 1 — € choose action according to m;(a)

Learn: after receiving r; with actions aq, a,

Q(ai,a;) « (1 —a)Q(aq,a;z) +a(ry +yV)
m () < argmax min " 7}(a,)Q(ay, @)

/ a,€eA
T[l()EAZ 2 2 aleAl

Ve min Y m(a)Q(ay,az)
CleAz
a1€A1
Update a = 1/ #times (a4, a,) visited

30

Q(ay,ay) « (1 —a)Q(ay,az) + a(ry +yV)

max v
i (s,)v

V=< Z T[i(s)al)Q(StaltaZ)tvaZ

CllEAl

31

z mi(s,a;) =1

a1€A1
m1(s,a,) = 0,Va,

Heads | Tails
Minimax-Q for Matching Pennies N U]
Tails -1,1 l,-1
t Actions Rewardl Qt(Ha H) Qt (H: T) Qt (Ta H) Qt (T! T) V(S) T (H)
0 1 1 0.5
I (H%H) 1 1.9 1 1 0.5

Piazza Poll 2

» If the actions are (H,T) in round | with a reward of -|
to player |, what would be the updated value of

Q(H,T) withy = 0.9?
» A: 0.9
» B: 0.1
» C:-0.1
» D: 1.9

» E: | don’t know

t

Actions Rewardl Qt(Ha H) Qt (H: T) Qt(Ta H) Qt (T* T) V(S) T (H)

0
1

1 1 1 1 1 0.5
(H*,H) 1 1.9 1 1 1 1 0.5

33

Heads | Tails
. - : Heads | 1,-1 | -1,
Minimax-Q for Matching Pennies fae
Tails -1, 1 [,- |
t Actions Rewardl Qt(H: H) Qt(H: T) Qt (T: H) Qt (T: T) V(S) 1 (H)
0 1 1 | 1 | 0.5
1 (H* H) 1 1.9 1 1 1 1 0.5
2 (T,H) 1 1.9 1 -0.1 1 1 0.55
3 (T,T) 1 1.9 1 -0.1 1.9 1279 0.690
4 (H*T) 1 1.9 0.151 0.1 1.9 0.967 0.534
5 (T,H) 1 1.9 0.151 0.115 1.9 0.964 0.535
6 (T,T) 1 1.9 0.151 -0.115 1.884 0.960 0.533
7 (T,H) 1 1.9 0.151 -0.122 1.884 0.958 0.534
8 (H,T) 1 1.9 0.007 0.122 1.884 0918 0.514
100 (H,H) 1 1.716 -0.269 -0.277 1.730 0.725 0.503
000 (T,T) 1 1.564 -0.426 -0.415 1.564 0.574 0.500

34

How to Evaluate a MARL algorithm (prescriptive)?

» Brainstorming: how to evaluate minimiax-Q!?

Recall: Design a learning algorithm Alg to get a “good”
policy (e.g., high total expected return against a broad class
of other agents)

35

How to Evaluate a MARL algorithm (prescriptive)?

» Training: Find a policy for agent | through minimax-Q
» Let an agent | learn with minimax-Q while agent 2 is
Also learning with minimax-Q (Self-play)
Using a heuristic strategy, e.g., random > Co-evolving!

Learning using a different learning algorithm, e.g., vanilla Q-
learning or a variant of minimax-Q

Exemplary resulting policy:
MM (Minimax-Q-trained-against-selfplay)
R (Minimax-Q-trained-against-Random)

nfl Q(Minimax-Q-trained-against-Q)

36

How to Evaluate a MARL algorithm (prescriptive)?

» Testing: Fix agent |’s strategy 1;, no more change
» Test again an agent 2’s strategy 7,, which can be
A heuristic strategy, e.g., random

Trained using a different learning algorithm, e.g., vanilla Q-
learning or a variant of minimax-Q

Need to specify agent |’s behavior during training agent 2
(random? Minimax-Q? Q-learning?), can be different from
T4 or even co-evolving

Best response to player |’s strategy 14
Worst case for player |
Fix 174, treat player | as part of the environment, find the
optimal policy for player 2 through single-agent RL

37

How to Evaluate a MARL algorithm (prescriptive)?

» Testing: Fix agent |’s strategy 1;, no more change
» Test again an agent 2’s strategy 7,, which can be
Exemplary policy for agent 2:
Y™ (Minimax-Q-trained-against-selfplay)
YR (Minimax-Q-trained-against-Random)
X (Random)
8% = BR(m;) (Best response to ;)

38

Piazza Poll 3

» Only consider strategies resulting from minimax-Q algorithm
and random strategy. How many different tests can we run? An
example test can be:

™ (Minimax-Q-trained-against-selfplay) vs 75 (Random)

A:l
B:2
C:4
D:9
E: Other

F: | don’t know

vV Vv vV vV VvV v

39

Piazza Poll 3

» Only consider strategies resulting from minimax-Q algorithm
and random strategy. How many different tests can we run?

» 174 can be
MM (Minimax-Q-trained-against-selfplay)
MR (Minimax-Q-trained-against-Random)
¥ (Random)

» 1, can be
™M (Minimax-Q-trained-against-selfplay)
YR (Minimax-Q-trained-against-Random)
% (Random)

» So 3*3=9

40

Fictitious Play

» A simple learning rule

An iterative approach for computing NE in two-player zero-
sum games

Learner explicitly maintain belief about opponent’s strategy
In each iteration, learner
Best responds to current belief about opponent
Observe the opponent’s actual play
Update belief accordingly

Simplest way of forming the belief: empirical frequency!

41

Fictitious Play

» One-shot matching pennies
Player 2

Heads

Tails

Heads

Player |

Tails

-1, 1

l,-|

42

Round

A W N — O

Let w(a)= #times opponent play a

Agent believes opponent’s strategy is

. . w(a)
choosing a with prob. 5 w(a)
I’s action 2’s action |’s belief 2’s belief
inw(a) inw(a)
(1.5,2) (2,1.5)
T (1.5,3) (2,2.5)

Fictitious Play

» How would actions change from iteration t to t + 1!

Steady state: whenever a pure strategy profile a = (a4, a,)
is played in t, it will be playedint + 1

If a = (aq,a,) is a strict NE (deviation leads to lower
utility), then it is a steady state of FP

If a = (a4, a,) is a steady state of FP, then it is a (possibly
weak) NE in the game

44

Fictitious Play

» Will this process converge!
Assume agents use empirical frequency to form the briefs

Empirical frequencies of play converge to NE if the game is
Two-player zero-sum
Solvable by iterative removal
Some other cases

45

Fictitious Play with Reinforcement Learning

» In each iteration, best responds to opponents’
historical average strategy

» Find best response through single-agent RL

* » * » * » *

Basic implementation: Perform .

* » * » * » * »

a complete RL process until
convergence for each agent in
each iteration -

-

Time consuming ®

46

(Optional) MARL with Partial Observation

» Assume a Markov game with partial observation (imperfect
information):

47

A set of N agents
A set of states S
Describing the possible configurations for all agents
A set of actions for each agent 44, ..., Ay
A transition function T (s, a4, a,, ...,a,,s")

Probability of arriving at state s’ after all the agents taking
actions a4, a,, ..., a, respectively

A reward function for each agent R;(s, a4, a,, ..., a,)
A set of observations for each agent 04, ..., Oy
A observation function for each agent ();(s)

(Optional) MARL with Partial Observation

» Assume a Markov game with partial observation

» Looking for a set of policies {r;(0;)}, one for each
agent, without knowing T, R; or ();

» Learn the policies through experience in the
environment and interact with each other

» Many algorithm can be applied, e.g., use a simple
variant of Minimax-Q

48

Patrol with Real-Time Information

» Sequential interaction
Players make flexible decisions instead of sticking to a plan
Players may leave traces as they take actions

» Example domain:Wildlife protection

i P

e, L

Footprints Lighters Poacher camp Tree marking

49 Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan
Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19

Patrol with Real-Time Information

[] [] []]

L
~

nl!

Destructive tools

aa RS

—

N
m
Footprints of attacker

_
LA

| [
!

Attacker' view

| [
Footprints of defender
— —_—
L | i[Features i.;
[] [il_
.J Defender’s view
H] i

[] [

Recall: Approximate Q-Learning

» Features are functions from g-state (s, a) to real numbers, e.g.,
f1(s, a)=Distance to closest ghost
f2(s, a)=Distance to closest food
f3(s, a)=Whether action leads to closer distance to food

» Aim to learn the g-value for any (s,a)

Assume the g-value can be approximated
by a parameterized Q-function

Q(s,a) = Qy(s,a)

If Q,,(s,a) is a linear function of features:
Q,(s,a) =w,f(s,a) + ... + wf.(s,a)

51

Recall: Approximate Q-Learning

Need to learn parameters w through interacting with the environment

Update Rule for Approximate Q-Learning with Q-Value Function:

20Q,,(s,a
w; < w; +a (r +ymaxQ,,(s',a") —Q,(s, a)) Qwls, @)
a’ aWi
Latest sample Previous estimate

If latest sample higher than previous estimate:
adjust weights to increase the estimated Q-value

52

(Optional) Train Defender Against Heuristic Attacker

o
Il A > 7
| = | T
T 1o — = p
b 7 | ’ ‘
e > e
o T Max = > 4] — - 7’ B 77’
R e 19 pooling o Max " Fur 64 5
ol e ol i il il 16 Pooling 32 Connection conrf;’:’tio -

» Through single-agent RL

» Use neural network to represent a parameterized Q function
Q(0;, a;) where o is the observation

53

(Optional) Train Defender Against Heuristic Attacker

Attacker '

[] | B [] []
Snares -

Defender ’

[] [] [] | [] [] []
Patrol Post A

[[] [] L] [] I. []

®

54

Compute Equilibrium: RL + Double Oracle

[Compute gl gt =} |

Nash(G, G > [Train f¢ = RL(c%) }

Compute Nash/Minimax Find Best Response
5 to attacker’s strategy

\%
\%
[Trainfa — RL(O.a)] | > Add fd,fa to
G4, G
Find Best Response to Update bags of strategies

defender’s strategy

55

(Optional) Other Domains: Patrol in Continuous Area

OptGradFP: CNN + Fictitious Play

::) Mean

Conv: 16, 4x4, 2x2
RelLU

Conv: 32, 16x16, 8x8 :> Std. Dev.
RelU

Input image

DeepFP: Generative network + Fictitious Play

< g :

Zp ~ N, BR, | u)

P :
(&) Game | p, neg
model |:{>r::>
network

u_, ~ E_P () |:_er>

-
56 Policy Learning for Continuous Space Security Games using DeepFP for Finding Nash Equilibrium in Continuous
Neural Networks. Nitin Kamra, Umang Gupta, Fei Fang, Action Spaces. Nitin Kamra, Umang Gupta, Kai Wang, Fei

Yan Liu, Milind Tambe. In AAAI-18 Fang, Yan Liu, Milind Tambe. In GameSec-19

Al Has Great Potential for Social Good

: Security & Safety

P I

Artificial
Intelligence

Machine Learning

Environmental

Computational Sustainapility
Game Theory e S ;
. %

roietal ChallengeD

57

