Warm up

Pick an agent among {Pacman, Blue Ghost, Red Ghost}. Design an algorithm to control your agent. Assume they can see each others' location but can't talk. Assume they move simultaneously in each step.

Announcement

- Assignments
 - HW12 (written) due 12/4 Wed, 10 pm Due 12/6 Fri, 10 pm
- ▶ Final exam
 - ▶ 12/12 Thu, Ipm-4pm
- Piazza post for in-class questions

AI: Representation and Problem Solving

Multi-Agent Reinforcement Learning

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Learning objectives

- ▶ Compare single-agent RL with multi-agent RL
- Describe the definition of Markov games
- Describe and implement
 - Minimax-Q algorithm
 - Fictitious play
- Explain at a high level how fictitious play and double-oracle framework can be combined with single-agent RL algorithms for multi-agent RL

- Many real-world scenarios have more than one agent!
 - Autonomous driving

- Many real-world scenarios have more than one agent!
 - Autonomous driving
 - Humanitarian Assistance / Disaster Response

- Many real-world scenarios have more than one agent!
 - Autonomous driving
 - Humanitarian Assistance / Disaster Response
 - Entertainment

- Many real-world scenarios have more than one agent!
 - Autonomous driving
 - Humanitarian Assistance / Disaster Response
 - Entertainment
 - Infrastructure security / green security / cyber security

- Many real-world scenarios have more than one agent!
 - Autonomous driving
 - Humanitarian Assistance / Disaster Response
 - Entertainment
 - Infrastructure security / green security / cyber security
 - Ridesharing

Recall: Normal-Form/Extensive-Form games

- Games are specified by
 - Set of players
 - Set of actions for each player (at each decision point)
 - Payoffs for all possible game outcomes
 - (Possibly imperfect) information each player has about the other player's moves when they make a decision
- Solution concepts
 - Nash equilibrium, dominant strategy equilibrium,
 Minimax/Maximin strategy, Stackelberg equilibrium
- Approaches to solve the game
 - Iterative removal, Solving linear systems, Linear programming

Can we use these approaches to previous problems?

B	e	r	ry	7
			_	

	Football	Concert
Football	2,1	0,0
Concert	0,0	1,2

- Limitations of classic approaches in game theory
 - Scalability: Can hardly handle complex problems
 - Need to specify payoff for all outcomes
 - Often need domain knowledge for improvement (e.g., abstraction)

Recall: Reinforcement learning

- Assume a Markov decision process (MDP):
 - \blacktriangleright A set of states $s \in S$
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Looking for a policy $\pi(s)$ without knowing T or R
- Learn the policy through experience in the environment

- Can we apply single-agent RL to previous problems? How?
 - Simultaneously independent single-agent RL, i.e., let every agent i use Q-learning to learn $Q(s, a_i)$ at the same time
 - Effective only in some problems (limited agent interactions)
 - Limitations of single-agent RL in multi-agent setting
 - Instability and adapatability: Agents are co-evolving

If treat other agents as part of environment, this environment is changing over time!

- Multi-Agent Reinforcement Learning
 - Let the agents learn through interacting with the environment and with each other
 - Simplest approach: Simultaneously independent single-agent
 RL (suffer from instability and adapatability)
 - Need better approaches

- Assume a Markov game:
 - ▶ A set of *N* agents
 - A set of states S
 - Describing the possible configurations for all agents
 - A set of actions for each agent A_1, \dots, A_N
 - A transition function $T(s, a_1, a_2, ..., a_n, s')$
 - Probability of arriving at state s' after all the agents taking actions $a_1, a_2, ..., a_n$ respectively
 - A reward function for each agent $R_i(s, a_1, a_2, ..., a_n)$

Piazza Poll I

- You know that the state at time t is s_t and the actions taken by the players at time t is $a_{t,1}, \ldots, a_{t,N}$. The reward for agent i at time t+1 is dependent on which factors?
 - \rightarrow A: S_t
 - \triangleright B: $a_{t,i}$
 - $ightharpoonup C: a_{t,-i} \triangleq a_{t,1}, ..., a_{t,i-1}, a_{t,i+1}, ..., a_{t,N}$
 - D: None
 - E: I don't know

- Assume a Markov game
- ▶ Looking for a set of policies $\{\pi_i\}$, one for each agent, without knowing T, R_i , $\forall i$
 - $\pi_i(s,a)$ is the probability of choosing action a at state s
- Each agent's total expected return is $\sum_t \gamma^t r_i^t$ where γ is the discount factor
- ▶ Learn the policies through experience in the environment and interact with each other

Descriptive

- What would happen if agents learn in a certain way?
- Propose a model of learning that mimics learning in real life
- Analyze the emergent behavior with this learning model (expecting them to agree with the behavior in real life)
- Identify interesting properties of the learning model

- Prescriptive (our main focus today)
 - How agents should learn?
 - Not necessary to show a match with real-world phenomena
 - Design a learning algorithm to get a "good" policy (e.g., high total reward against a broad class of other agents)

DeepMind's AlphaStar beats 99.8% of human

Recall: Value Iteration and Bellman Equation

Value iteration

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \forall s$$

• With reward function R(s, a)

$$V_{k+1}(s) = \max_{a} R(s, a) + \gamma \sum_{s'} P(s'|s, a) V_k(s'), \forall s$$

When converges (Bellman Equation)

$$V^*(s) = \max_{a} Q^*(s, a), \forall s$$

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^*(s'), \forall a, s$$

Value Iteration in Markov Games

$$V^{*}(s) = \max_{a} Q^{*}(s, a), \forall s$$

$$Q^{*}(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a)V^{*}(s'), \forall a, s$$

- In two-player zero-sum Markov game
 - Let $V^*(s)$ be state value for player 1 ($-V^*(s)$ for player 2)
 - Let $Q^*(s, a_1, a_2)$ be action-state value for player I when player I chooses a_1 and player 2 chooses a_2 in state s

$$Q^*(s, a_1, a_2) =$$

$$V^*(s) =$$

- \blacktriangleright Value iteration requires knowing T, R_i
- Minimax-Q [Littman94]
 - Extension of Q-learning
 - For two-player zero-sum Markov games
 - Provably converges to Nash equilibria in self play

A learning agent learns through interacting with another learning agent using the same learning algorithm

Initialize
$$Q(s, a_1, a_2) \leftarrow 1, V(s) \leftarrow 1, \pi_1(s, a_1) \leftarrow \frac{1}{|A_1|}, \alpha \leftarrow 1$$

Take actions: At state s, with prob. ϵ choose a random action, and with prob. $1 - \epsilon$ choose action according to $\pi_1(s, a)$

Learn: after receiving r_1 for moving from s to s' via a_1 , a_2

$$Q(s, a_1, a_2) \leftarrow (1 - \alpha)Q(s, a_1, a_2) + \alpha(r_1 + \gamma V(s'))$$

$$\pi_1(s,\cdot) \leftarrow \underset{\pi'_1(s,\cdot) \in \Delta(A_1)}{\operatorname{argmax}} \min_{a_2 \in A_2} \sum_{a_1 \in A_1} \pi'_1(s,a_1) Q(s,a_1,a_2)$$

$$V(s) \leftarrow \min_{a_2 \in A_2} \sum_{a_1 \in A_1} \pi_1(s, a_1) Q(s, a_1, a_2)$$

Update α

How to solve the maximin problem?

$$\pi_{1}(s,\cdot) \leftarrow \underset{\pi'_{1}(s,\cdot) \in \Delta(A_{1})}{\operatorname{argmax}} \min_{a_{2} \in A_{2}} \sum_{a_{1} \in A_{1}} \pi'_{1}(s,a_{1}) Q(s,a_{1},a_{2})$$

$$V(s) \leftarrow \underset{a_{2} \in A_{2}}{\min} \sum_{a_{1} \in A_{1}} \pi_{1}(s,a_{1}) Q(s,a_{1},a_{2})$$

Linear Programming: $\max_{\pi'_1(s,\cdot),v} v$

Get optimal solution $\pi_1^{\prime*}(s,\cdot), v^*$, update $\pi_1(s,\cdot) \leftarrow \pi_1^{\prime*}(s,\cdot), V(s) \leftarrow v^*$

- ▶ How does player 2 chooses action a_2 ?
- If player 2 is also using the minimax-Q algorithm
 - Self-play
 - Proved to converge to NE
- If player 2 chooses actions uniformly randomly, the algorithm still leads to a good policy empirically in some games

Minimax-Q for Matching Pennies

A simple Markov game: Repeated Matching Pennies Player 2

| Heads | Tails | Heads | Tails | Tails | Heads | I,-I | I,-I | | I,-I |

- Let state to be dummy: Player's strategy is not dependent on past actions. Just play a mixed strategy as in the one-shot game
- Discount factor $\gamma = 0.9$

Minimax-Q for Matching Pennies

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Simplified version for this games with only one state

Initialize
$$Q(a_1, a_2) \leftarrow 1, V \leftarrow 1, \pi_1(a_1) \leftarrow 0.5, \alpha \leftarrow 1$$

Take actions: With prob. ϵ choose a random action, and with prob. $1-\epsilon$ choose action according to $\pi_1(a)$

Learn: after receiving r_1 with actions a_1 , a_2

$$Q(a_1, a_2) \leftarrow (1 - \alpha)Q(a_1, a_2) + \alpha(r_1 + \gamma V)$$

$$\pi_1(\cdot) \leftarrow \underset{\pi'_1(\cdot) \in \Delta^2}{\operatorname{argmax}} \min_{a_2 \in A_2} \sum_{a_1 \in A_1} \pi'_1(a_1) Q(a_1, a_2)$$

$$V \leftarrow \min_{a_2 \in A_2} \sum_{a_1 \in A_1} \pi_1(a_1) Q(a_1, a_2)$$

Update $\alpha = 1/$ #times (a_1, a_2) visited

Minimax-Q for	Matching	Pennies
---------------	----------	----------------

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

\mathbf{t}	Actions	Reward_1	$\mathbf{Q_t}(\mathbf{H},\mathbf{H})$	$\mathbf{Q_t}(\mathbf{H},\mathbf{T})$	$\mathbf{Q_t}(\mathbf{T},\mathbf{H})$	$\mathbf{Q_t}(\mathbf{T},\mathbf{T})$	$\mathbf{V}(\mathbf{s})$	$\pi_1(\mathbf{H})$
0			1	1	1	1	1	0.5
1	(H^*,H)	1	1.9	1	1	1	1	0.5
	$Q(a_1, a_2) \leftarrow (1 - \alpha)Q(a_1, a_2) + \alpha(r_1 + \gamma V)$							

$$\max_{\pi_{1}'(s,\cdot),v} v$$

$$v \leq \sum_{a_{1} \in A_{1}} \pi_{1}'(s,a_{1})Q(s,a_{1},a_{2}), \forall a_{2}$$

$$\sum_{a_{1} \in A_{1}} \pi_{1}'(s,a_{1}) = 1$$

$$\pi_{1}'(s,a_{1}) \geq 0, \forall a_{1}$$

Piazza Poll 2

If the actions are (H,T) in round I with a reward of -I to player I, what would be the updated value of Q(H,T) with $\gamma = 0.9$?

► A: 0.9

▶ B: 0. I

► C: -0. I

D: 1.9

E: I don't know

t	Actions	Reward_1	$\mathbf{Q_t}(\mathbf{H},\mathbf{H})$	$\mathbf{Q_t}(\mathbf{H},\mathbf{T})$	$\mathbf{Q_t}(\mathbf{T},\mathbf{H})$	$\mathbf{Q_t}(\mathbf{T},\mathbf{T})$	V(s)	$\pi_1(\mathbf{H})$
0			1	1	1	1	1	0.5
1	(H^*, H)	1	1.9	1	1	1	1	0.5

Minimax-Q for Matching Pennies

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

t	Actions	Reward_1	$\mathbf{Q_t}(\mathbf{H},\mathbf{H})$	$\mathbf{Q_t}(\mathbf{H},\mathbf{T})$	$\mathbf{Q_t}(\mathbf{T},\mathbf{H})$	$\mathbf{Q_t}(\mathbf{T},\mathbf{T})$	V(s)	$\pi_1(\mathbf{H})$
0			1	1	1	1	1	0.5
1	(H^*, H)	1	1.9	1	1	1	1	0.5
2	(T,H)	-1	1.9	1	-0.1	1	1	0.55
3	(T,T)	1	1.9	1	-0.1	1.9	1.279	0.690
4	(H^*,T)	-1	1.9	0.151	-0.1	1.9	0.967	0.534
5	(T,H)	-1	1.9	0.151	-0.115	1.9	0.964	0.535
6	(T,T)	1	1.9	0.151	-0.115	1.884	0.960	0.533
7	(T,H)	-1	1.9	0.151	-0.122	1.884	0.958	0.534
8	(H,T)	-1	1.9	0.007	-0.122	1.884	0.918	0.514
:	:	:	:	:	:	:	:	:
100	(H,H)	1	1.716	-0.269	-0.277	1.730	0.725	0.503
:	:	:	:	:	:	:	:	:
000	(T,T)	1	1.564	-0.426	-0.415	1.564	0.574	0.500
:	÷	÷	÷	:	÷	÷	÷	:

- Brainstorming: how to evaluate minimiax-Q?
 - Recall: Design a learning algorithm Alg to get a "good" policy (e.g., high total expected return against a broad class of other agents)

- Training: Find a policy for agent I through minimax-Q
- ▶ Let an agent I learn with minimax-Q while agent 2 is
 - Also learning with minimax-Q (Self-play)
 - Using a heuristic strategy, e.g., random

- Co-evolving!
- Learning using a different learning algorithm, e.g., vanilla Q-learning or a variant of minimax-Q
- Exemplary resulting policy:
 - $\rightarrow \pi_1^{MM}$ (Minimax-Q-trained-against-selfplay)
 - $\rightarrow \pi_1^{MR}$ (Minimax-Q-trained-against-Random)
 - $\rightarrow \pi_1^{MQ}$ (Minimax-Q-trained-against-Q)

- Testing: Fix agent I's strategy π_1 , no more change
- ▶ Test again an agent 2's strategy π_2 , which can be
 - A heuristic strategy, e.g., random
 - Trained using a different learning algorithm, e.g., vanilla Qlearning or a variant of minimax-Q
 - Need to specify agent 1's behavior during training agent 2 (random? Minimax-Q? Q-learning?), can be different from π_1 or even co-evolving
 - Best response to player I's strategy π_1
 - Worst case for player I
 - Fix π_1 , treat player I as part of the environment, find the optimal policy for player 2 through single-agent RL

- Testing: Fix agent I's strategy π_1 , no more change
- ▶ Test again an agent 2's strategy π_2 , which can be
 - Exemplary policy for agent 2:
 - $\rightarrow \pi_2^{MM}$ (Minimax-Q-trained-against-selfplay)
 - $\rightarrow \pi_2^{MR}$ (Minimax-Q-trained-against-Random)
 - $\rightarrow \pi_2^R(Random)$
 - $\pi_2^{BR} = BR(\pi_1)$ (Best response to π_1)

Piazza Poll 3

Only consider strategies resulting from minimax-Q algorithm and random strategy. How many different tests can we run? An example test can be:

```
\pi_1^{MM} (Minimax-Q-trained-against-selfplay) vs \pi_2^R (Random)
```

- A: I
- ▶ B: 2
- C: 4
- D: 9
- ▶ E: Other
- F: I don't know

Piazza Poll 3

- Only consider strategies resulting from minimax-Q algorithm and random strategy. How many different tests can we run?
- \blacktriangleright π_1 can be
 - π_1^{MM} (Minimax-Q-trained-against-selfplay)
 - π_1^{MR} (Minimax-Q-trained-against-Random)
 - $\rightarrow \pi_1^R(Random)$
- $\rightarrow \pi_2$ can be
 - π_2^{MM} (Minimax-Q-trained-against-selfplay)
 - π_2^{MR} (Minimax-Q-trained-against-Random)
 - $\rightarrow \pi_2^R(Random)$
- ► So 3*3=9

- ▶ A simple learning rule
 - An iterative approach for computing NE in two-player zerosum games
 - Learner explicitly maintain belief about opponent's strategy
 - In each iteration, learner
 - Best responds to current belief about opponent
 - Dbserve the opponent's actual play
 - Update belief accordingly
 - Simplest way of forming the belief: empirical frequency!

One-shot matching pennies

Player 2

	Heads	Tails
Heads	1,-1	-1,1
Tails	-1,1	1,-1

Let w(a)= #times opponent play a

Agent believes opponent's strategy is choosing a with prob. $\frac{w(a)}{\sum_{a'} w(a')}$

Round	I's action	2's action	I's belief in $w(a)$	2's belief in <i>w</i> (<i>a</i>)
0			(1.5,2)	(2,1.5)
I	T	Т	(1.5, 3)	(2, <mark>2.5</mark>)
2				
3				
4				

- ▶ How would actions change from iteration t to t + 1?
 - Steady state: whenever a pure strategy profile $\mathbf{a}=(a_1,a_2)$ is played in t, it will be played in t+1
 - If $\mathbf{a}=(a_1,a_2)$ is a strict NE (deviation leads to lower utility), then it is a steady state of FP
 - If $a=(a_1,a_2)$ is a steady state of FP, then it is a (possibly weak) NE in the game

- Will this process converge?
 - Assume agents use empirical frequency to form the briefs
 - Empirical frequencies of play converge to NE if the game is
 - ▶ Two-player zero-sum
 - Solvable by iterative removal
 - Some other cases

Fictitious Play with Reinforcement Learning

- In each iteration, best responds to opponents' historical average strategy
- Find best response through single-agent RL

Basic implementation: Perform a complete RL process until convergence for each agent in each iteration

Time consuming (3)

(Optional) MARL with Partial Observation

- Assume a Markov game with partial observation (imperfect information):
 - ▶ A set of *N* agents
 - A set of states S
 - Describing the possible configurations for all agents
 - \blacktriangleright A set of actions for each agent A_1, \dots, A_N
 - A transition function $T(s, a_1, a_2, ..., a_n, s')$
 - Probability of arriving at state s' after all the agents taking actions $a_1, a_2, ..., a_n$ respectively
 - A reward function for each agent $R_i(s, a_1, a_2, ..., a_n)$
 - \blacktriangleright A set of observations for each agent O_1 , ..., O_N
 - A observation function for each agent $\Omega_i(s)$

(Optional) MARL with Partial Observation

Assume a Markov game with partial observation

Looking for a set of policies $\{\pi_i(o_i)\}$, one for each agent, without knowing T, R_i or Ω_i

Learn the policies through experience in the environment and interact with each other

 Many algorithm can be applied, e.g., use a simple variant of Minimax-Q

Patrol with Real-Time Information

- Sequential interaction
 - Players make flexible decisions instead of sticking to a plan
 - Players may leave traces as they take actions
- ▶ Example domain: Wildlife protection

Footprints

Lighters

Poacher camp

Tree marking

Patrol with Real-Time Information

Recall: Approximate Q-Learning

- Features are functions from q-state (s, a) to real numbers, e.g.,
 - $f_1(s, a)$ =Distance to closest ghost
 - $f_2(s,a)$ =Distance to closest food
 - $f_3(s,a)$ =Whether action leads to closer distance to food
- Aim to learn the q-value for any (s,a)
 - Assume the q-value can be approximated by a parameterized Q-function

$$Q(s,a) \approx Q_w(s,a)$$

If $Q_w(s, a)$ is a linear function of features:

$$Q_w(s, a) = w_1 f_1(s, a) + ... + w_n f_n(s, a)$$

Recall: Approximate Q-Learning

Need to learn parameters w through interacting with the environment

Update Rule for Approximate Q-Learning with Q-Value Function:

$$w_i \leftarrow w_i + \alpha \left(r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a) \right) \frac{\partial Q_w(s, a)}{\partial w_i}$$
Latest sample Previous estimate

If latest sample higher than previous estimate: adjust weights to increase the estimated Q-value

(Optional) Train Defender Against Heuristic Attacker

- ▶ Through single-agent RL
- Use neural network to represent a parameterized Q function $Q(o_i, a_i)$ where o is the observation

(Optional) Train Defender Against Heuristic Attacker

Patrol Post \triangle

Compute Equilibrium: RL + Double Oracle

Compute
$$\sigma^d$$
, $\sigma^a = Nash(G^d, G^a)$

Train
$$f^d = RL(\sigma^a)$$

Compute Nash/Minimax

Find Best Response to attacker's strategy

Train
$$f^a = RL(\sigma^a)$$

Add f^d , f^a to G^d , G^a

Find Best Response to defender's strategy

Update bags of strategies

(Optional) Other Domains: Patrol in Continuous Area

OptGradFP: CNN + Fictitious Play

DeepFP: Generative network + Fictitious Play

Al Has Great Potential for Social Good

Security & Safety

Environmental Sustainability

Mobility

