
Warm up

 Pick an agent among {Pacman, Blue Ghost, Red 

Ghost}. Design an algorithm to control your agent. 

Assume they can see each others’ location but can’t 

talk. Assume they move simultaneously in each step.

1



Announcement

 Assignments

 HW12 (written) due 12/4 Wed, 10 pm

 Final exam

 12/12 Thu, 1pm-4pm

 Piazza post for in-class questions

Due 12/6 Fri, 10 pm

2



AI: Representation and Problem Solving

Multi-Agent Reinforcement Learning

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu



Learning objectives

 Compare single-agent RL with multi-agent RL

 Describe the definition of Markov games

 Describe and implement 

 Minimax-Q algorithm

 Fictitious play

 Explain at a high level how fictitious play and double-oracle 

framework can be combined with single-agent RL algorithms 

for multi-agent RL

4



Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

5



Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

6



Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

 Entertainment

7



Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

 Entertainment

 Infrastructure security / green security / cyber security

8



Single-Agent → Multi-Agent

 Many real-world scenarios have more than one agent!

 Autonomous driving

 Humanitarian Assistance / Disaster Response

 Entertainment

 Infrastructure security / green security / cyber security

 Ridesharing

9



Recall: Normal-Form/Extensive-Form games

 Games are specified by 

 Set of players

 Set of actions for each player (at each decision point)

 Payoffs for all possible game outcomes

 (Possibly imperfect) information each player has about the 

other player's moves when they make a decision

 Solution concepts

 Nash equilibrium, dominant strategy equilibrium, 

Minimax/Maximin strategy, Stackelberg equilibrium

 Approaches to solve the game

 Iterative removal, Solving linear systems, Linear programming

10



Single-Agent → Multi-Agent

 Can we use these approaches to previous problems?

 Limitations of classic approaches in game theory

 Scalability: Can hardly handle complex problems

 Need to specify payoff for all outcomes

 Often need domain knowledge for improvement (e.g., 

abstraction)
11

Football Concert

Football 2,1 0,0

Concert 0,0 1,2

Berry

A
le

x



Recall: Reinforcement learning

 Assume a Markov decision process (MDP):

 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

 Looking for a policy (s) without knowing T or R

 Learn the policy through experience in the environment

12



Single-Agent → Multi-Agent

 Can we apply single-agent RL to previous problems? How?

 Simultaneously independent single-agent RL, i.e., let every 

agent 𝑖 use Q-learning to learn 𝑄(𝑠, 𝑎𝑖) at the same time

 Effective only in some problems (limited agent interactions)

 Limitations of single-agent RL in multi-agent setting

 Instability and adapatability: Agents are co-evolving

13

If treat other agents as part of 

environment, this environment 

is changing over time!



Single-Agent → Multi-Agent

 Multi-Agent Reinforcement Learning 

 Let the agents learn through interacting with the 

environment and with each other

 Simplest approach: Simultaneously independent single-agent 

RL (suffer from instability and adapatability)

 Need better approaches

14



Multi-Agent Reinforcement Learning

 Assume a Markov game:

 A set of 𝑁 agents

 A set of states 𝑆

 Describing the possible configurations for all agents

 A set of actions for each agent 𝐴1, … , 𝐴𝑁
 A transition function 𝑇 𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑠

′

 Probability of arriving at state 𝑠′ after all the agents taking 
actions 𝑎1, 𝑎2, … , 𝑎𝑛 respectively

 A reward function for each agent 𝑅𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛)

15



Piazza Poll 1

 You know that the state at time 𝑡 is 𝑠𝑡 and the 

actions taken by the players at time 𝑡 is 𝑎𝑡,1, … , 𝑎𝑡,𝑁. 

The reward for agent 𝑖 at time 𝑡 + 1 is dependent on 

which factors?

 A: 𝑠𝑡
 B: 𝑎𝑡,𝑖

 C: 𝑎𝑡,−𝑖 ≜ 𝑎𝑡,1, … , 𝑎𝑡,𝑖−1, 𝑎𝑡,𝑖+1, … , 𝑎𝑡,𝑁

 D: None

 E: I don’t know

16



Multi-Agent Reinforcement Learning

 Assume a Markov game

 Looking for a set of policies {𝜋𝑖}, one for each agent, 
without knowing 𝑇, 𝑅𝑖 , ∀𝑖
 𝜋𝑖 𝑠, 𝑎 is the probability of choosing action 𝑎 at state 𝑠

 Each agent’s total expected return is  𝑡 𝛾
𝑡 𝑟𝑖
𝑡 where 

𝛾 is the discount factor

 Learn the policies through experience in the 
environment and interact with each other

17



Multi-Agent Reinforcement Learning

 Descriptive

 What would happen if agents learn in a certain way?

 Propose a model of learning that mimics learning in real life

 Analyze the emergent behavior with this learning model 

(expecting them to agree with the behavior in real life)

 Identify interesting properties of the learning model

18

https://youtu.be/kopoLzvh5jY
https://youtu.be/kopoLzvh5jY


Multi-Agent Reinforcement Learning

 Prescriptive (our main focus today)

 How agents should learn?

 Not necessary to show a match with real-world phenomena

 Design a learning algorithm to get a “good” policy

(e.g., high total reward against a broad class of other agents)

19

DeepMind's AlphaStar beats 99.8% of human

https://youtu.be/6eiErYh_FeY
https://youtu.be/6eiErYh_FeY


Recall: Value Iteration and Bellman Equation

20

 Value iteration

 With reward function 𝑅(𝑠, 𝑎)

 When converges (Bellman Equation)

𝑉𝑘+1 𝑠 = max
𝑎
 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠
′ , ∀𝑠

𝑉𝑘+1 𝑠 = max
𝑎
𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉𝑘 𝑠
′ , ∀𝑠

𝑉∗ 𝑠 = max
𝑎
𝑄∗(𝑠, 𝑎) , ∀𝑠

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ , ∀𝑎, 𝑠



Value Iteration in Markov Games

 In two-player zero-sum Markov game

 Let 𝑉∗(𝑠) be state value for player 1 (−𝑉∗(𝑠) for player 2)

 Let 𝑄∗(𝑠, 𝑎1, 𝑎2) be action-state value for player 1 when 

player 1 chooses 𝑎1 and player 2 chooses 𝑎2 in state 𝑠

21

𝑄∗ 𝑠, 𝑎1, 𝑎2 =

𝑉∗ 𝑠 =

𝑉∗ 𝑠 = max
𝑎
𝑄∗(𝑠, 𝑎) , ∀𝑠

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑉∗ 𝑠′ , ∀𝑎, 𝑠



Minimax-Q Algorithm

 Value iteration requires knowing 𝑇, 𝑅𝑖

 Minimax-Q [Littman94]

 Extension of Q-learning

 For two-player zero-sum Markov games

 Provably converges to Nash equilibria in self play

23

A learning agent learns through interacting 

with another learning agent using the same 

learning algorithm



Minimax-Q Algorithm

Initialize 𝑄 𝑠, 𝑎1, 𝑎2 ← 1,𝑉 𝑠 ← 1, 𝜋1 𝑠, 𝑎1 ←
1

|𝐴1|
, 𝛼 ← 1

Take actions: At state 𝑠, with prob. 𝜖 choose a random action, and 

with prob. 1 − 𝜖 choose action according to 𝜋1 𝑠, 𝑎

Learn: after receiving 𝑟1 for moving from 𝑠 to 𝑠′ via 𝑎1, 𝑎2

Update 𝛼

24

𝑉 𝑠 ← min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2

𝑄 𝑠, 𝑎1, 𝑎2 ← 1 − 𝛼 𝑄 𝑠, 𝑎1, 𝑎2 + 𝛼 𝑟1 + 𝛾𝑉 𝑠
′

𝜋1 𝑠,⋅ ← argmax
𝜋1
′ (𝑠,⋅)∈Δ(𝐴1)

min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2



Minimax-Q Algorithm

 How to solve the maximin problem?

26

Linear Programming: max
𝜋1
′ 𝑠,⋅ ,𝑣
𝑣

Get optimal solution 𝜋1
′∗ 𝑠,⋅ , 𝑣∗, update 𝜋1 𝑠,⋅ ← 𝜋1

′∗ 𝑠,⋅ , 𝑉 𝑠 ← 𝑣∗

𝑉 𝑠 ← min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2

𝜋1 𝑠,⋅ ← argmax
𝜋1
′ (𝑠,⋅)∈Δ(𝐴1)

min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2



Minimax-Q Algorithm

 How does player 2 chooses action 𝑎2?

 If player 2 is also using the minimax-Q algorithm

 Self-play

 Proved to converge to NE

 If player 2 chooses actions uniformly randomly, the algorithm 

still leads to a good policy empirically in some games

28



Minimax-Q for Matching Pennies

 A simple Markov game: Repeated Matching Pennies

 Let state to be dummy: Player’s strategy is not 

dependent on past actions. Just play a mixed strategy 

as in the one-shot game

 Discount factor 𝛾 = 0.9

29

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Player 2

P
la

ye
r

1



Minimax-Q for Matching Pennies

Simplified version for this games with only one state

Initialize 𝑄 𝑎1, 𝑎2 ← 1, 𝑉 ← 1, 𝜋1 𝑎1 ← 0.5, 𝛼 ← 1

Take actions: With prob. 𝜖 choose a random action, and with 

prob. 1 − 𝜖 choose action according to 𝜋1 𝑎

Learn: after receiving 𝑟1 with actions 𝑎1, 𝑎2

30

𝑄 𝑎1, 𝑎2 ← 1 − 𝛼 𝑄 𝑎1, 𝑎2 + 𝛼 𝑟1 + 𝛾𝑉

𝜋1 ⋅ ← argmax
𝜋1
′ (⋅)∈Δ2

min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1
′ 𝑎1 𝑄 𝑎1, 𝑎2

𝑉 ← min
𝑎2∈𝐴2

 

𝑎1∈𝐴1

𝜋1 𝑎1 𝑄 𝑎1, 𝑎2

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Update 𝛼 = 1/ #times 𝑎1, 𝑎2 visited



Minimax-Q for Matching Pennies

31

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

𝑄 𝑎1, 𝑎2 ← 1 − 𝛼 𝑄 𝑎1, 𝑎2 + 𝛼 𝑟1 + 𝛾𝑉

max
𝜋1
′ 𝑠,⋅ ,𝑣
𝑣

𝑣 ≤  

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 𝑄 𝑠, 𝑎1, 𝑎2 , ∀𝑎2

 

𝑎1∈𝐴1

𝜋1
′ 𝑠, 𝑎1 = 1

𝜋1
′ 𝑠, 𝑎1 ≥ 0, ∀𝑎1



Piazza Poll 2

 If the actions are (H,T) in round 1 with a reward of -1 

to player 1, what would be the updated value of 

𝑄(𝐻, 𝑇) with 𝛾 = 0.9?

 A: 0.9

 B: 0.1

 C: -0.1

 D: 1.9

 E: I don’t know

33



Minimax-Q for Matching Pennies

34

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1



How to Evaluate a MARL algorithm (prescriptive)?

 Brainstorming: how to evaluate minimiax-Q?

 Recall: Design a learning algorithm 𝐴𝑙𝑔 to get a “good”

policy (e.g., high total expected return against a broad class 

of other agents)

35



How to Evaluate a MARL algorithm (prescriptive)?

 Training: Find a policy for agent 1 through minimax-Q

 Let an agent 1 learn with minimax-Q while agent 2 is

 Also learning with minimax-Q (Self-play)

 Using a heuristic strategy, e.g., random

 Learning using a different learning algorithm, e.g., vanilla Q-

learning or a variant of minimax-Q

 Exemplary resulting policy: 

 𝜋1
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋1
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋1
𝑀𝑄

(Minimax-Q-trained-against-Q)

36

Co-evolving!



How to Evaluate a MARL algorithm (prescriptive)?

 Testing: Fix agent 1’s strategy 𝜋1, no more change

 Test again an agent 2’s strategy 𝜋2, which can be

 A heuristic strategy, e.g., random

 Trained using a different learning algorithm, e.g., vanilla Q-

learning or a variant of minimax-Q

 Need to specify agent 1’s behavior during training agent 2 

(random? Minimax-Q? Q-learning?), can be different from 

𝜋1 or even co-evolving

 Best response to player 1’s strategy 𝜋1
 Worst case for player 1

 Fix 𝜋1, treat player 1 as part of the environment, find the 

optimal policy for player 2 through single-agent RL

37



How to Evaluate a MARL algorithm (prescriptive)?

 Testing: Fix agent 1’s strategy 𝜋1, no more change

 Test again an agent 2’s strategy 𝜋2, which can be

 Exemplary policy for agent 2: 

 𝜋2
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋2
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋2
𝑅(Random)

 𝜋2
𝐵𝑅 = 𝐵𝑅(𝜋1) (Best response to 𝜋1)

38



Piazza Poll 3

 Only consider strategies resulting from minimax-Q algorithm 

and random strategy. How many different tests can we run? An 

example test can be:

 A: 1

 B: 2

 C: 4

 D: 9

 E: Other

 F: I don’t know

39

𝜋1
𝑀𝑀(Minimax-Q-trained-against-selfplay) vs 𝜋2

𝑅(Random)



Piazza Poll 3

 Only consider strategies resulting from minimax-Q algorithm 

and random strategy. How many different tests can we run? 

 𝜋1 can be

 𝜋1
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋1
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋1
𝑅(Random)

 𝜋2 can be

 𝜋2
𝑀𝑀(Minimax-Q-trained-against-selfplay)

 𝜋2
𝑀𝑅(Minimax-Q-trained-against-Random)

 𝜋2
𝑅(Random)

 So 3*3=9

40



Fictitious Play

 A simple learning rule

 An iterative approach for computing NE in two-player zero-

sum games

 Learner explicitly maintain belief about opponent’s strategy

 In each iteration, learner

 Best responds to current belief about opponent

 Observe the opponent’s actual play

 Update belief accordingly

 Simplest way of forming the belief: empirical frequency!

41



Fictitious Play

 One-shot matching pennies

42

Heads Tails

Heads 1,-1 -1,1

Tails -1,1 1,-1

Player 2

P
la

ye
r

1

Let 𝑤(𝑎)= #times opponent play 𝑎

Agent believes opponent’s strategy is 

choosing 𝑎 with prob. 
𝑤 𝑎

 
𝑎′
𝑤 𝑎′

Round 1’s action 2’s action 1’s belief 

in 𝑤(𝑎)
2’s belief

in 𝑤(𝑎)

0 (1.5,2) (2,1.5)

1 T T (1.5,3) (2,2.5)

2

3

4



Fictitious Play

 How would actions change from iteration 𝑡 to 𝑡 + 1?
 Steady state: whenever a pure strategy profile 𝐚 = (𝑎1, 𝑎2)

is played in 𝑡, it will be played in 𝑡 + 1

 If 𝐚 = (𝑎1, 𝑎2) is a strict NE (deviation leads to lower 

utility), then it is a steady state of FP

 If 𝐚 = (𝑎1, 𝑎2) is a steady state of FP, then it is a (possibly 

weak) NE in the game

44



Fictitious Play

 Will this process converge?

 Assume agents use empirical frequency to form the briefs

 Empirical frequencies of play converge to NE if the game is 

 Two-player zero-sum

 Solvable by iterative removal

 Some other cases

45



Fictitious Play with Reinforcement Learning

 In each iteration, best responds to opponents’ 

historical average strategy

 Find best response through single-agent RL

46

Basic implementation: Perform 

a complete RL process until 

convergence for each agent in 

each iteration

Time consuming 



(Optional) MARL with Partial Observation

 Assume a Markov game with partial observation (imperfect 
information):

 A set of 𝑁 agents

 A set of states 𝑆

 Describing the possible configurations for all agents

 A set of actions for each agent 𝐴1, … , 𝐴𝑁
 A transition function 𝑇 𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛, 𝑠

′

 Probability of arriving at state 𝑠′ after all the agents taking 
actions 𝑎1, 𝑎2, … , 𝑎𝑛 respectively

 A reward function for each agent 𝑅𝑖(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛)

 A set of observations for each agent 𝑂1, … , 𝑂𝑁
 A observation function for each agent Ω𝑖(𝑠)

47



(Optional) MARL with Partial Observation

 Assume a Markov game with partial observation

 Looking for a set of policies {𝜋𝑖 𝑜𝑖 }, one for each 
agent, without knowing 𝑇, 𝑅𝑖 or Ω𝑖

 Learn the policies through experience in the 

environment and interact with each other

 Many algorithm can be applied, e.g., use a simple 

variant of Minimax-Q

48



Patrol with Real-Time Information

 Sequential interaction

 Players make flexible decisions instead of sticking to a plan

 Players may leave traces as they take actions

 Example domain: Wildlife protection

Tree markingLighters Poacher campFootprints

Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan

Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19

49



Patrol with Real-Time Information

Defender’s view

Footprints of defender 

Destructive tools

Footprints of attacker

Attacker' view

Features

STRAT

POINT

50



Recall: Approximate Q-Learning

51

 Features are functions from q-state (s, a) to real numbers, e.g.,

 𝑓1(𝑠, 𝑎)=Distance to closest ghost

 𝑓2(𝑠, 𝑎)=Distance to closest food

 𝑓3(𝑠, 𝑎)=Whether action leads to closer distance to food

 Aim to learn the q-value for any (s,a)

 Assume the q-value can be approximated 
by a parameterized Q-function 

𝑄 𝑠, 𝑎 ≈ 𝑄𝑤 𝑠, 𝑎

𝑄𝒘(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + … + 𝑤𝑛𝑓𝑛(𝑠, 𝑎)

If 𝑄𝑤(𝑠, 𝑎) is a linear function of features: 



Recall: Approximate Q-Learning

Update Rule for Approximate Q-Learning with Q-Value Function:

52

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎
𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖

If latest sample higher than previous estimate: 

adjust weights to increase the estimated Q-value

Previous estimate Latest sample

Need to learn parameters 𝑤 through interacting with the environment



(Optional) Train Defender Against Heuristic Attacker

 Through single-agent RL

 Use neural network to represent a parameterized Q function 

𝑄(𝑜𝑖 , 𝑎𝑖) where 𝑜 is the observation

Up Down Left Right Still

53



(Optional) Train Defender Against Heuristic Attacker

Defender

Snares

Attacker

Patrol Post

54



Compute Equilibrium: RL + Double Oracle

Compute 𝜎𝑑 , 𝜎𝑎 =
𝑁𝑎𝑠ℎ(𝐺𝑑 , 𝐺𝑎)

Train 𝑓𝑑 = 𝑅𝐿(𝜎𝑎)

Find Best Response to 

defender’s strategy

Compute Nash/Minimax 

Train𝑓𝑎 = 𝑅𝐿(𝜎𝑎)

Find Best Response 

to attacker’s strategy

Add 𝑓𝑑 ,𝑓𝑎 to 

𝐺𝑑 , 𝐺𝑎

Update bags of strategies

55



(Optional) Other Domains: Patrol in Continuous Area

OptGradFP: CNN + Fictitious Play

DeepFP: Generative network + Fictitious Play

Policy Learning for Continuous Space Security Games using 

Neural Networks. Nitin Kamra, Umang Gupta, Fei Fang, 

Yan Liu, Milind Tambe. In AAAI-18

DeepFP for Finding Nash Equilibrium in Continuous 

Action Spaces. Nitin Kamra, Umang Gupta, Kai Wang, Fei 

Fang, Yan Liu, Milind Tambe. In GameSec-19

56



AI Has Great Potential for Social Good

Artificial 

Intelligence

Machine Learning

Computational 

Game Theory

Security & Safety

Environmental 

Sustainability
Mobility

Societal Challenges

57


