Warm-up as you walk in LH/

= For the following Bayes net, write the query P(X, | e,.,) in terms of
the conditional probability tables associated with the Bayes net.

X
P(X4 | 61162163164) = ° e e 4




Announcements

Assignments

= HWI10
= Due Wed 11/20

" PS5
* Due Mon 11/25

TA for next semester!

= (CSD (15-281): https://www.ugrad.cs.cmu.edu/ta/S20/
= MLD (10-315): https://www.ml.cmu.edu/academics/ta.html



https://www.ugrad.cs.cmu.edu/ta/S20/
https://www.ml.cmu.edu/academics/ta.html

Sampling Wrap-up



Likelihood Weighting

IN: evidence instantiation
w=1.0

fori=1, 2, .., n
= if X, is an evidence variable
= X, = observation x; for X,
= Setw =w * P(x; | Parents(X.))
" else
= Sample x, from P(X, | Parents(X)))

return (X, X,, ..., X,)), W




Likelihood Weighting

No evidence: Some evidence: All evidence:
Prior Sampling e Likelihood Weighted Sampling Likelihood Weighted
Input: no evidence Input: evidence instantiation Input: evidence instantiation
w=1.0 w=1.0
fori=1, 2, ..., n fori=1, 2, ..., n fori=1, 2, ..., n
if X; is an evidence variable
= X. = observation x; for X,
= Setw=w * P(x, | Parents(X.)) = Setw=w * P(x, | Parents(X.))
else
= Sample x, from P(X. | Parents(X.)) = Sample x, from P(X. | Parents(X.))
) S - —_—
return (x,, X,, ..., X)) return (x,, X,, ..., X,), W return w




Likelihood Weighting Distribution (4)
Consistency of likelihood weighted sampling distribution @ G

Joint from Bayes nets Q @
P(A,B,C,D,E) = P(A) P(B|A) P(C|A) P(D|C) P(E|C)




Likelihood Weighting Distribution

—>Evidence: +a, —d
Joint from Bayes nets

Consistency of likelihood weighted sampling distribution \ O

P(A,B,C,D,E) = P(4+a) P(B|+a) P(C|+a) P(—d|C) P(E|C)
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Likelihood Weighting Distribution (4)

Consistency of likelihood weighted sampling distribution e G

Evidence: +a, +b, —c, —d, +¢

Joint from Bayes nets Q e
P(A,B,C,D,E) = P(+a) P(+b|+a) P(—c|+a) P(—d|—c) P(+e| — ¢)




Likelihood Weighting Distribution (4)

Consistency of likelihood weighted sampling distribution @ G
Evidence: None

Joint from Bayes nets Q @
P(A,B,C,D,E) = P(A) P(B|A) P(C|A) P(D|C) P(E|C)




Piazza Poll 1

Two identical samples from likelihood weighted sampling will have the same
exact weights.

True

False

It depends

| don’t know

OO ®xP



+b —d
Piazza Poll 1 A—F)—C)—®)

Two identical samples from likelihood weighted sampling will have the same
exact weights.

T a -l—\O - _.J N

B. False

C. Itdepends
D. I don’t know o\ +b —C - O? W3g



Piazza Poll 2

Given evidence +c, and number of samples N,
what does the following likelihood weighted value approximate?

: N(+a,—b,+c)
Welght(+a,—b,+c) ' N

A. P(+4+a,—b,+c)
B. P(+a,—b|+c)
C. I’'m not sure



Piazza Poll 2 @__%@‘_9@

Given evidence +c, and number of samples N,
what does the following likelihood weighted value approximate?

<
N(+a,—b,+c)

weight 4 _p +¢) - N "”?{AB

P(+a,—b, +¢) = P(B \A\
8. P(+a,—b|+c)
C. I'm not sure N/

~ Ple) Parm‘vs(e% mP (S | Parents [s%

N —



Likelihood Weighting

Likelihood weighting is good

= \We have taken evidence into account as we generate
the sample

= E.g. here, W’ s value will get picked based on the
evidence values of S, R

= More of our samples will reflect the state of the world
suggested by the evidence

Likelihood weighting doesn’t solve all our problems

= Evidence influences the choice of downstream
variables, but not upstream ones (C isn’t more
likely to get a value matching the evidence)

We would like to consider evidence when we
sample every variable




Likelihood Weighting

Likelihood weighting doesn’t solve all our problems

= Evidence influences the choice of downstream
variables, but not upstream ones (C isn’t more
likely to get a value matching the evidence)

We would like to consider evidence when we
sample every variable

6(/:; /‘4@ ((DV\ - Gibbs sampling

O—O—=O—=D

T he a’ople (5 Mellon



Gibbs Sampling




Gibbs Sampling

Procedure: keep track of a full instantiation x,, x,, ..., X,.
1. Start with an arbitrary instantiation consistent with the evidence.
2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.



Gibbs Sampling Example: P( S | +r)

Step 1: Fix evidence
= R=+r

Step 2: Initialize other variables
= Randomly

Steps 3: Repeat
= Choose a non-evidence variable X
= Resample X from P( X | all other variables)

Sample from P(S|+ ¢,—w,+r)  Sample from P(C|+ s, —w,+r) Sample from P(W|+ s, +c¢, +7)



Gibbs Sampling Example: P( S | +r) /\/? S

Keep only the last sample from each iteration:
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Efficient Resampling of One Variable

Sample from P(S | +c, +r, -w)

P(S,+c, +r, —w)
P(+c,+r, —w)

P8, 4c, 1, —w)

N > . P(s,+c,+r, —w)

_ P(4+c)P(S|+ ¢)P(+r| + c)P(—w|S, +7)
- > P(+e)P(s| + ¢) P(+r| + ¢) P(—wl|s, +r)
P P(S| + c.)BH'r‘I‘-ﬁP(—wIS +7)

T PO PEtT) >, P(s| + o) P(—wls, +7)
_ P(S|+c)P(—w|S,+r)
>, P(s| + ) P(—wl|s, +7)

P(S|+ ¢, +r,—w) =

Many things cancel out — only CPTs with S remain!

More generally: only CPTs that have resampled variable need to be considered, and
joined together



Gibbs Sampling

Procedure: keep track of a full instantiation x,, x,, ..., X,.
1. Start with an arbitrary instantiation consistent with the evidence.
2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.

Property: in the limit of repeating this infinitely many times the resulting sample is
coming from the correct distribution

Rationale: both upstream and downstream variables condition on evidence.

In contrast: likelihood weighting only conditions on upstream evidence, and hence
weights obtained in likelihood weighting can sometimes be very small. Sum of weights
over all samples is indicative of how many “effective” samples were obtained, so want
high weight.



Gibbs Sampling

Gibbs sampling produces sample from the query distribution P(Q | e ) in
limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called Markov
chain Monte Carlo (MCMC) methods

* Metropolis-Hastings is one of the more famous MCMC methods
(in fact, Gibbs sampling is a special case of Metropolis-Hastings)

You may read about Monte Carlo methods — they’re just sampling



Bayes’ Net Sampling Summary

Prior Sampling P(Q, E) Rejection Sampling P(Q | e)




Al: Representation and Problem Solving
Hidden Markov Models

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU Al and http://ai.berkeley.edu



Warm-up as you walk in

= For the following Bayes net, write the query P(X, | e,,) in terms of
the conditional probability tables associated with the Bayes net.

P(Xy €00 C5e) S
P(X, | e,e,ese,) = P(Z €€Z €j q< r j@}'@ & .

-xZzz ’\>L><,\ %Q\x(\ PO@IX?) "

X1 % X3



Reasoning over Time or Space

Often, we want to reason about a sequence of observations
= Speech recognition

= Robot localization

= User attention

= Medical monitoring

Need to introduce time (or space) into our models



Markov Models

= Value of X at a given time is called the state

(X)) 0% ) - -+
P(X1) P(X¢| X;—1)

= Parameters: called transition probabilities or dynamics, specify how the state evolves
over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action



Conditional Independence

...,.é AR

Basic conditional independence:

= Past and future independent given the present
= Each time step only depends on the previous

= This is called the (first order) Markov property

Note that the chain is just a (growable) BN

= We can always use generic BN reasoning on it if we truncate
the chain at a fixed length



Example: Markov Chain Weather

States: X = {rain, sun}

= |nitial distribution: 1.0 sun

= CPT P(X, | X,.,):

Xea | X | P(XcIX4)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

LB

I||li]h

@y@

Two new ways of representing the same CPT

0.9
0.3

sun v sun




Example: Markov Chain Weather
Initial distribution: P(X; = sun) = 1.0

P, =rany=O

What is the probability distribution after one step?
P(X, =sun) =7

_ Z /D(X /X X _,S(Ar\

0.3

0.7 0.1

—)

2 (X, .-m;x =x) Px,=x)

0.9



0.9
Example: Markov Chain Weather 0.3

Initial distribution: P(X; = sun) = 1.0 .@ @

0.7 01

What is the probability distribution after one step?

P(X,=sun) =? O

P(X> =sun) =
P(X, = sun|Xy = rain)P(X1 = rain)



Piazza Poll 3
Initial distribution: P(X, = sun) = 0.9

F(XZ: ra{f\B; D( (
What is the probability distribution after the next step?
P(X; =sun) =7

A) 0.81
B) 0.84
C) 0.9
D) 1.0
F) 1.2

0.7

0.3

0.1

0.9



0.9

Piazza Poll 3 0.3

Initial distribution: P(X, = sun) = 0.9

0.7

What is the probability distribution after the next step? o
P(X; = sun) =7

?(X :50”‘3 -z P(stzm) Xz;’(h
A) 0.81 2 X,
B) 0.84 = X_=sun | X, = P(X =
C) 0.9 x% P< 3 ‘ 2 A 2 z\
o) = 0909 + 0350\

E) 1.2
. O3 + 0.03 = 0.8

1



Markov Chain Inference

OO OOy

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),
write an equation to compute P(X5s).




Markov Chain Inference

OO OOy

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = Zx4P(x4,X5)
= Zx4P(X5 | x4 )P (x4)



Markov Chain Inference

OO OOy

If you know the transition probabilities, P(X; | X;_;), and you know P (X,),
write an equation to compute P(X5s).

P(Xs) = le,xz,x3,x4 P(x1, x5, x3, X4, X5)
= le,XZ,X3,X4P(X5 | x4 )P (x4 | x3)P(x3 | x2)P(x2 | x1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3p(x4 | x3)P(x3 | x2)P(x2 | x1)P(xq)
= Zx4P(X5 x4)2x1,x2,x3P(xlwxz'xB:xéL)
= Zx4P(X5 x4 )P (x4)




Weather prediction

States {rain, sun}

= Initial distribution P(X)

P(X,)

sun

rain

0.5

0.5

= Transition model P(X, | X, )

Xi1 P(X;|X,..)
sun rain

sun 0.9 0.1

rain 0.3 0.7

D
EN

®-E 43 60D

”1

b

| 1

Two new ways of representing the same CPT

0.9
0.3

sun

0.1



Weather prediction

Time 0: P(X,) =<0.5,0.5> X1

P(X;|X,.)
sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 17
P(X1) = 2., P(Xy=xy X,)
= ZXO P(X, | Xq=x,) P(X,=X,)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

=<0.6,0.4>




Weather prediction, contd.

Time 1: P(X;) =<0.6,0.4> Xyq P(X|X,,)

sun rain
sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 27
P(Xy) = 2., P(X;=x5, X,)

=2, PX, | Xi=x7) P(X;=x,)
= 0.6<0.9,0.1> + 0.4<0.3,0.7>
=<0.66,0.34>




Weather prediction, contd.

Time 2: P(X,) =<0.66,0.34> Xyq P(X|X,,)

sun rain

sun 0.9 0.1
rain 0.3 0.7

What is the weather like at time 37
P(X3) = 2., P(X,=x, X;)

=2, PIX3 | X3=x;) P(Xy=x5)

= 0.66<0.9,0.1> + 0.34<0.3,0.7> _,@
= <0.696,0.304>




Forward algorithm (simple form)

Probability from

Transition model J . . . ]
previous iteration

What is the state at time t?
P(Xp) = Xy P(Xe1™Xe, Xo)
= th_l P(X| Xi17Xeq) P(X17Xe4)

Iterate this update starting at t=0



Hidden Markov Models




HMM as a Bayes Net Warm-up

= For the following Bayes net, write the query P(X, | e,.,) in terms of the conditional

probability tables associated with the Bayes net. i i

o

©—

P(X, | e,e,ese,) =



Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
= Underlying Markov chain over states X
= You observe evidence E at each time step

= X.is a single discrete variable; E; may be continuous and
may consist of several variables

YT
® O O




Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1




Example: Weather HMM

An HMM is defined by:

" |nitial distribution: P(X,) [ ( [ﬁ (

" Transition model: P(X, | X, ;) - PRTITRE
t-1 t t-1
= Sensor model: P(E, | X,) sun | rain
sun 0.9 0.1
rain 0.3 0.7
Weathert_l Weathert Weathert+1
W, P(U,|W,)

true false

sun 0.2 0.8

rain 0.9 0.1




Example: Ghostbusters HMM

= State: location of moving ghost
= QObservations: Color recorded by 1/61/6|1/2

ghost sensor at clicked squares ¥

0 (1/6| O

= P(X,) = uniform
" P(X, | X, ) = usually move clockwise, but 1/9|1/9| 1/9 01010

sometimes move randomly or stay in place

P(X, | X;=(2,3

= P(C, | X;) = same sensor model as before: /9115|158 (X 1 X,5(2,3))

red means close, green means far away. 1/9|1/9|1/9

P(Xy) l
©

[Demo: Ghostbusters — Circular Dynamics — HMM (L14D2)]



HMM as Probability Model

= Joint distribution for Markov model:

P(Xgyeeey X7) = PXg) I Licq.7 PO, | X q)
= Joint distribution for hidden Markov model:
P(X()) X]_IE]_I *e) XT;ET) = P(XO) Ht:]_;T P(Xt | Xt_]_) P(Et | Xt)
= Future states are independent of the past given the present

= Current evidence is independent of everything else given the current state
= Are evidence variables independent of each other?

Y s
® ® ©

a1 - Xp

For example: P(X;., | e1.5) =P(X{, X5, | e, €5, €3)



Real HMM Examples

Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:

= Observations are words (tens of thousands)
= States are translation options

Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Molecular biology:
= Observations are nucleotides ACGT
= States are coding/non-coding/start/stop/splice-site etc.



Other HMM Queries

Filtering: P(X.|e,.,)

DO
© ® @ @

e

Smoothing: P(X,|e,.,), k<t

Prediction: P(X,,.|e;.)

D@OH®)
@ @ ©

Explanation: P(X,.,|e;.,)




Inference Tasks
NFiItering: P(X:leq.s)
= belief state—input to the decision process of a rational agent
Prediction: P(X,,|eq.;) for k>0
= evaluation of possible action sequences; like filtering without the evidence
Smoothing: P(X,|e ;) forO< k<t
" better estimate of past states, essential for learning

Most likely explanation: argmax, . (x1 + | €1.4)
= speech recognition, decoding with a n0|sy channel



Pacman — Hunting Invisible Ghosts with Sonar

-
74 CS188 Pacman

A [re——

21.0 26.0

[Demo: Pacman — Sonar — No Beliefs(L14D1)]



Filtering Algorithm

P(Xiiil€1.001) = P(et+1 |Xt+1) th P t+1| Xt) P(x, | eq.)

l Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

-

(o)

¥




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

oles

O




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network

A4

]




Filtering Algorithm

Query: What is the current state, given all of the current and past
evidence?
Marching forward through the HMM network




Example: Prediction step

. . (14 144
As time passes, uncertainty “accumulates (Transition model: ghosts usually go clockwise)

T=1

<0.01 <0.01<0.01 <0.01{| <0.01
nn
m

EEEEEE

T=

0.01
5




Example: Update step

As we get observations, beliefs get reweighted, uncertainty “decreases”

uu
<0.01 <0.01/(<0.01|<0.01 <0.01|<0.01}|<0.01f|<0.01[<0.01{<0.01

Before observation After observation




Demo Ghostbusters — Circular Dynamics -- HMM



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)
= a P(X;, er| e1.0—1)

DD

->

l




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | eq.t)=P(X¢| er,€1.6-1) ®_’®_+@-

= a P(X;, er| e1.0—1) l

A4 A4
Qe | @ @ @ @

Xt—1




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X¢ | eq.t)=P(X¢| er,€1.6-1) @_’®_+@-

= a P(X;, er| e1.0—1) l

A4 A4
Qe | @ @ @ @

Xt—1

a Z P(x¢—1| €1.t-1) P(X¢|x¢—1, €1.4—1) P(ee| X, Xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.r) = P(X¢| er, €1:0-1) @—»@ >@ >@

= a P(X;, et e1.6-1)

azp(xt_l,xt;etlelzt—l)

Xt—1

a z P(x¢—1| €1.0—1) P(X¢|x¢—1, €1.4—1) P(er| X, xe—1, €1.6-1)

Xt—1



Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(Xt | e1.t) = P(X¢| er, e1.6-1)
= a P(X;, er| e1.0—1)

a z P(x¢—q,Xe, €] €1.6-1)

Xt—1

Xt—1

oNo

]

@ ) PGl ene-1) P(XelRey) PlerlX)




Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1)

= a P(X;, et e1.6-1)
04 z P(x¢—1,X¢, €| €1.6-1)

Xt—1

oNo

]

@ ) PGl exe-y) P(XcRey) Pler]X)

Xt—1

a P(e¢|x;) z P(xelxe—1) P(x¢—q| €1.4-1)

Xt—1




Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.r) = P(X¢| er, €1:0-1) @—»@——»@—
l

= a P(X;, et e1.6-1)

) 4 ) 4
04 z P(x¢—1, X¢, €] €1.6-1)

Xt—1

a Z P(xe—1| e1.6—1) P(X¢|xe—q) P(es]| Xt)

Xt—1

a P(e¢|x;) z P(xelxe—1) P(x¢—q| €1.4-1)

Xt—1

Qg



Recursion!

Filtering Algorithm

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

P(X: | e1.t) = P(X¢| er,€1.0-1) Xy @
= a P(X;, er| e1.0—1)

—»Xy

v

!
04 z P(xi—1, Xt €| €1.0-1)

Xt—1

@ ) PGl exe-y) P(XcRey) Pler]X)

Xt—1

a P(e¢|x;) z P(xelxe—1) P(x¢—q| €1.4-1)

Xt—1



Filtering Algorithm

P(Xp1l€1.000) = P €1 |Xt+1 th P t+1| Xt) Pixe | €x4)

l Normalize I hdate Nedict ]

fl:t+1 = FORWARD(fl:t ’ et+1)
Cost per time step: O(|X|?) where | X| is the number of states

Time and space costs are constant, independent of t
O(|X|?) is infeasible for models with many state variables
We get to invent really cool approximate filtering algorithms



Other HMM Queries

Filtering: P(X.|e,.,)

DO
© ® @ @

X

Smoothing: P(X,|e,.\), t<N

Prediction: P(X,|e,., )

D@OH®)
@ @ ©

Explanation: P(X,.y|eq.n)




Next Time: Particle Filtering and Applications of
HMMSs



