
Warm-up as you walk in

▪ For the following Bayes net, write the query P(X4 | e1:4) in terms of 
the conditional probability tables associated with the Bayes net.

P(X4 | e1,e2,e3,e4) = 
X2

e1

X1 X3 X4

e2 e3 e4



Announcements

Assignments

▪ HW10

▪ Due Wed 11/20

▪ P5

▪ Due Mon 11/25

TA for next semester!

▪ CSD (15-281): https://www.ugrad.cs.cmu.edu/ta/S20/

▪ MLD (10-315): https://www.ml.cmu.edu/academics/ta.html

https://www.ugrad.cs.cmu.edu/ta/S20/
https://www.ml.cmu.edu/academics/ta.html


Sampling Wrap-up



Likelihood Weighting
IN: evidence instantiation

w = 1.0

for i=1, 2, …, n

▪ if Xi is an evidence variable
▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

▪ else
▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting

Input: evidence instantiation

w = 1.0

for i=1, 2, …, n

▪ Set w = w * P(xi | Parents(Xi))

return w

No evidence:

Prior Sampling

Some evidence:

Likelihood Weighted Sampling

All evidence:

Likelihood Weighted

Input: no evidence

for i=1, 2, …, n

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn)

Input: evidence instantiation

w = 1.0

for i=1, 2, …, n

if Xi is an evidence variable

▪ Xi = observation xi for Xi

▪ Set w = w * P(xi | Parents(Xi))

else

▪ Sample xi from P(Xi | Parents(Xi))

return (x1, x2, …, xn), w



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: +𝑎, −𝑑

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎 𝑃 𝐵 +𝑎 𝑃 𝐶 +𝑎 𝑃 −𝑑 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: +𝑎, +𝑏, −𝑐, −𝑑, +𝑒

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 +𝑎 𝑃 +𝑏 +𝑎 𝑃 −𝑐 +𝑎 𝑃 −𝑑 −𝑐 𝑃(+𝑒| − 𝑐)

𝐴

𝐵 𝐶

𝐷 𝐸



Likelihood Weighting Distribution
Consistency of likelihood weighted sampling distribution

Evidence: None

Joint from Bayes nets

𝑃 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 = 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)

𝐴

𝐵 𝐶

𝐷 𝐸



Piazza Poll 1

Two identical samples from likelihood weighted sampling will have the same 
exact weights.

A. True
B. False
C. It depends
D. I don’t know



Piazza Poll 1

Two identical samples from likelihood weighted sampling will have the same 
exact weights.

A. True
B. False
C. It depends
D. I don’t know



Piazza Poll 2
Given evidence +c, and number of samples 𝑁,
what does the following likelihood weighted value approximate?

weight(+𝑎,−𝑏,+𝑐) ⋅
𝑁 +𝑎,−𝑏,+𝑐

𝑁

A. 𝑃(+𝑎,−𝑏,+𝑐)
B. 𝑃 +𝑎,−𝑏 + 𝑐)
C. I’m not sure



Piazza Poll 2
Given evidence +c, and number of samples 𝑁,
what does the following likelihood weighted value approximate?

weight(+𝑎,−𝑏,+𝑐) ⋅
𝑁 +𝑎,−𝑏,+𝑐

𝑁

A. 𝑃(+𝑎,−𝑏,+𝑐)
B. 𝑃 +𝑎,−𝑏 + 𝑐)
C. I’m not sure



Likelihood Weighting

Likelihood weighting is good
▪ We have taken evidence into account as we generate 

the sample

▪ E.g. here, W’s value will get picked based on the 
evidence values of S, R

▪ More of our samples will reflect the state of the world 
suggested by the evidence

Likelihood weighting doesn’t solve all our problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable



Likelihood Weighting

Likelihood weighting doesn’t solve all our problems

▪ Evidence influences the choice of downstream 
variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

We would like to consider evidence when we 
sample every variable

→ Gibbs sampling



Gibbs Sampling



Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xn.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.



Step 2: Initialize other variables 
▪ Randomly

Gibbs Sampling Example: P( S | +r)

Step 1: Fix evidence
▪ R = +r

Steps 3: Repeat
▪ Choose a non-evidence variable X

▪ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Keep only the last sample from each iteration:

1.

2.

3.

Gibbs Sampling Example: P( S | +r)

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C

S +r

W

C



Efficient Resampling of One Variable
Sample from P(S | +c, +r, -w)

Many things cancel out – only CPTs with S remain!

More generally: only CPTs that have resampled variable need to be considered, and 
joined together

S +r

W

C



Gibbs Sampling
Procedure: keep track of a full instantiation x1, x2, …, xn.

1. Start with an arbitrary instantiation consistent with the evidence.

2. Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.

3. Keep repeating this for a long time.

Property: in the limit of repeating this infinitely many times the resulting sample is 
coming from the correct distribution

Rationale: both upstream and downstream variables condition on evidence.

In contrast: likelihood weighting only conditions on upstream evidence, and hence 
weights obtained in likelihood weighting can sometimes be very small.  Sum of weights 
over all samples is indicative of how many “effective” samples were obtained, so want 
high weight.



Gibbs Sampling

Gibbs sampling produces sample from the query distribution P( Q | e ) in 
limit of re-sampling infinitely often

Gibbs sampling is a special case of more general methods called Markov 
chain Monte Carlo (MCMC) methods 

▪Metropolis-Hastings is one of the more famous MCMC methods          
(in fact, Gibbs sampling is a special case of Metropolis-Hastings) 

You may read about Monte Carlo methods – they’re just sampling



Bayes’ Net Sampling Summary

Prior Sampling  P(Q, E)

Likelihood Weighting  P( Q , e)

Rejection Sampling  P( Q | e )

Gibbs Sampling  P( Q | e )



AI: Representation and Problem Solving

Hidden Markov Models

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU AI and http://ai.berkeley.edu



Warm-up as you walk in

▪ For the following Bayes net, write the query P(X4 | e1:4) in terms of 
the conditional probability tables associated with the Bayes net.

P(X4 | e1,e2,e3,e4) = 
X2

e1

X1 X3 X4

e2 e3 e4



Reasoning over Time or Space

Often, we want to reason about a sequence of observations

▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

Need to introduce time (or space) into our models



Markov Models

▪ Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the state evolves 
over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times

▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4



Conditional Independence

Basic conditional independence:
▪ Past and future independent given the present
▪ Each time step only depends on the previous
▪ This is called the (first order) Markov property

Note that the chain is just a (growable) BN
▪ We can always use generic BN reasoning on it if we truncate 

the chain at a fixed length



States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ CPT P(Xt | Xt-1):

Example: Markov Chain Weather



Example: Markov Chain Weather
Initial distribution: 𝑃(𝑋1 = 𝑠𝑢𝑛) = 1.0

What is the probability distribution after one step?

𝑃(𝑋2 = 𝑠𝑢𝑛) = ?

rain sun

0.9

0.7

0.3

0.1



Example: Markov Chain Weather
Initial distribution: 𝑃(𝑋1 = 𝑠𝑢𝑛) = 1.0

What is the probability distribution after one step?

𝑃(𝑋2 = 𝑠𝑢𝑛) = ?

rain sun

0.9

0.7

0.3

0.1



Piazza Poll 3
Initial distribution: 𝑃(𝑋2 = 𝑠𝑢𝑛) = 0.9

What is the probability distribution after the next step?

𝑃(𝑋3 = 𝑠𝑢𝑛) = ?

A) 0.81

B) 0.84

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Piazza Poll 3
Initial distribution: 𝑃(𝑋2 = 𝑠𝑢𝑛) = 0.9

What is the probability distribution after the next step?

𝑃(𝑋3 = 𝑠𝑢𝑛) = ?

A) 0.81

B) 0.84

C) 0.9

D) 1.0

E) 1.2

rain sun

0.9

0.7

0.3

0.1



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣ 𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

X2X1 X3 X4



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣ 𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

𝑃 𝑋5 = σ𝑥4 𝑃 𝑥4, 𝑋5

= σ𝑥4 𝑃 𝑋5 𝑥4 𝑃 𝑥4

X2X1 X3 X4



Markov Chain Inference

If you know the transition probabilities, 𝑃(𝑋𝑡 ∣ 𝑋𝑡−1), and you know 𝑃(𝑋4),

write an equation to compute  𝑃(𝑋5).

𝑃 𝑋5 = σ𝑥1,𝑥2,𝑥3,𝑥4 𝑃 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑋5

= σ𝑥1,𝑥2,𝑥3,𝑥4 𝑃 𝑋5 𝑥4 𝑃 𝑥4 ∣ 𝑥3 𝑃 𝑥3 ∣ 𝑥2 𝑃 𝑥2 ∣ 𝑥1 𝑃 𝑥1

= σ𝑥4 𝑃 𝑋5 𝑥4 σ𝑥1,𝑥2,𝑥3 𝑃 𝑥4 ∣ 𝑥3 𝑃 𝑥3 ∣ 𝑥2 𝑃 𝑥2 ∣ 𝑥1 𝑃 𝑥1

= σ𝑥4 𝑃 𝑋5 𝑥4 σ𝑥1,𝑥2,𝑥3 𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4)

= σ𝑥4 𝑃 𝑋5 𝑥4 𝑃 𝑥4

X2X1 X3 X4



States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

▪ Initial distribution P(X0) 

▪ Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5

Weather prediction



Weather prediction

Time 0: P(X0) =<0.5,0.5>

What is the weather like at time 1?
P(X1) =

X1X0

x0
P(X0=x0, X1)

= x0
P(X1| X0=x0) P(X0=x0)

= 0.5<0.9,0.1> + 0.5<0.3,0.7>

= <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



x1
P(X1=x1, X2)

= x1
P(X2| X1=x1) P(X1=x1)

= 0.6<0.9,0.1> + 0.4<0.3,0.7>

= <0.66,0.34>
X0

Weather prediction, contd.

Time 1: P(X1) =<0.6,0.4>

What is the weather like at time 2?
P(X2) =

X2X1

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



x2
P(X2=x2, X3)

= x2
P(X3| X2=x2) P(X2=x2)

= 0.66<0.9,0.1> + 0.34<0.3,0.7>

= <0.696,0.304>

Weather prediction, contd.

Time 2: P(X2) =<0.66,0.34>

What is the weather like at time 3?
P(X3) =

X3X2X1

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Forward algorithm (simple form)

What is the state at time t?
P(Xt) = xt-1

P(Xt-1=xt-1, Xt)

= xt-1
P(Xt| Xt-1=xt-1) P(Xt-1=xt-1)

Iterate this update starting at t=0

Probability from 
previous iteration

Transition model



Hidden Markov Models



HMM as a Bayes Net Warm-up

▪ For the following Bayes net, write the query P(X4 | e1:4) in terms of the conditional 
probability tables associated with the Bayes net.

P(X4 | e1,e2,e3,e4) = 

X2

e1

X1 X3 X4

e2 e3 e4



Hidden Markov Models

Usually the true state is not observed directly

Hidden Markov models (HMMs)
▪ Underlying Markov chain over states X

▪ You observe evidence E at each time step

▪ Xt is a single discrete variable; Et may be continuous and 
may consist of several variables

X5X1X0 X2 X3

E1 E2 E3 E5



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using 
multiple sources of evidence

Idea: Repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t-1

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



Example: Weather HMM

Umbrella t-1 Umbrella t Umbrella t+1

Weather t-1 Weather t Weather t+1

An HMM is defined by:
▪ Initial distribution:   P(X0)
▪ Transition model:    P(Xt | Xt-1)
▪ Sensor model:          P(Et | Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1



Example: Ghostbusters HMM

▪ State: location of moving ghost

▪ Observations: Color recorded by 
ghost sensor at clicked squares

▪ P(X0) = uniform

▪ P(Xt | Xt-1) = usually move clockwise, but 
sometimes move randomly or stay in place

▪ P(Ctij | Xt) = same sensor model as before:
red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P( X2 | X1=(2,3) )

1/6

0 1/6

1/2

0

0 0 0

1/6

X5

X1X0 X2 X3

C1ij C2ij C3ij

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]



HMM as Probability Model

▪ Joint distribution for Markov model: 

P(X0,…, XT) = P(X0)t=1:T P(Xt | Xt-1)

▪ Joint distribution for hidden Markov model:                                                                 

P(X0, X1,E1, …, XT,ET) = P(X0) t=1:T P(Xt | Xt-1) P(Et | Xt)

▪ Future states are independent of the past given the present

▪ Current evidence is independent of everything else given the current state

▪ Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5

Useful notation: Xa:b = Xa , Xa+1, …, Xb

For example: P(X1:2 | e1:3) = P(X1, X2, | e1 , e2, e3)



Real HMM Examples

Speech recognition HMMs:
▪ Observations are acoustic signals (continuous valued)
▪ States are specific positions in specific words (so, tens of thousands)

Machine translation HMMs:
▪ Observations are words (tens of thousands)
▪ States are translation options

Robot tracking:
▪ Observations are range readings (continuous)
▪ States are positions on a map (continuous)

Molecular biology:
▪ Observations are nucleotides ACGT
▪ States are coding/non-coding/start/stop/splice-site etc.



Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt+k|e1:t)

Smoothing: P(Xk|e1:t), k<t Explanation: P(X1:t|e1:t)



Inference Tasks

Filtering: P(Xt|e1:t)
▪ belief state—input to the decision process of a rational agent 

Prediction: P(Xt+k|e1:t) for k > 0 
▪ evaluation of possible action sequences; like filtering without the evidence 

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
▪ better estimate of past states, essential for learning 

Most likely explanation: argmaxx1:t
P(x1:t | e1:t) 

▪ speech recognition, decoding with a noisy channel 



Pacman – Hunting Invisible Ghosts with Sonar

[Demo: Pacman – Sonar – No Beliefs(L14D1)]



Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
P(Xt+1| xt) P(xt | e1:t)

f1:t+1 = FORWARD(f1:t , et+1)

PredictUpdateNormalize



Filtering Algorithm

X2

e1

X1

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X3

e2

X2X1

e3e1

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X4

e3

X3X1

e4e1

X2

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Filtering Algorithm

X4

e3

X3
X1

e4e1

X2

e2

Query: What is the current state, given all of the current and past 
evidence?

Marching forward through the HMM network



Example: Prediction step

As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

(Transition model: ghosts usually go clockwise)



Example: Update step

As we get observations, beliefs get reweighted, uncertainty “decreases”

Before observation After observation



Demo Ghostbusters – Circular Dynamics -- HMM



Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1
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𝑡



Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1, 𝑒1:𝑡−1 𝑃 𝑒𝑡|𝑋𝑡, 𝑥𝑡−1, 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1, 𝑒1:𝑡−1 𝑃 𝑒𝑡|𝑋𝑡, 𝑥𝑡−1, 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1 𝑃 𝑥𝑡−1| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1 𝑃 𝑥𝑡−1| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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Filtering Algorithm

X2

e1

X1 X3 X4

e2 e3 e4

Query: What is the current state, given all of the current and past evidence?

Matching math with Bayes net

= 𝛼 𝑃 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1, 𝑋𝑡, 𝑒𝑡| 𝑒1:𝑡−1

= 𝛼 ෍

𝑥𝑡−1

𝑃 𝑥𝑡−1| 𝑒1:𝑡−1 𝑃 𝑋𝑡|𝑥𝑡−1 𝑃 𝑒𝑡|𝑋𝑡

= 𝛼 𝑃 𝑒𝑡|𝑥𝑡 ෍

𝑥𝑡−1

𝑃 𝑥𝑡|𝑥𝑡−1 𝑃 𝑥𝑡−1| 𝑒1:𝑡−1

𝑃 𝑋𝑡 𝑒1:𝑡) = 𝑃 𝑋𝑡| 𝑒𝑡, 𝑒1:𝑡−1
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ec
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Filtering Algorithm

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) xt
P(Xt+1| xt) P(xt | e1:t)

f1:t+1 = FORWARD(f1:t , et+1)

Cost per time step: O(|X|2) where |X| is the number of states

Time and space costs are constant, independent of t

O(|X|2) is infeasible for models with many state variables

We get to invent really cool approximate filtering algorithms

PredictUpdateNormalize



Other HMM Queries

Filtering: P(Xt|e1:t)

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3 e4

X2

e1

X1 X3 X4

e2 e3

Prediction: P(Xt|e1:t-1)

Smoothing: P(Xt|e1:N), t<N Explanation: P(X1:N|e1:N)



Next Time: Particle Filtering and Applications of 
HMMs


