Candy Grab Game

As you walk in:

- 1. Grab a pack of game pieces (candy)
- 2. Form groups of 2 (or 3 with an observer)
- 3. Play the game!
 - A. 11 pieces on the table
 - B. Take turns taking either 1 or 2 pieces
 - C. Person that takes the last piece wins!
- 4. Think about how you might implement an Agent to play this in code:

```
class Agent
   function getAction(state)
   return action
```


AI: Representation and Problem Solving Introduction

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI & http://ai.berkeley.edu

Course Staff

Instructors

Fei Fang

Pat Virtue

Teaching Assistants

Angela Yang

Claire Wang (Head TA)

George Brown

Michelle Ma

Sean Pereira

Chakara (Tian)
Owarang

Tina Wu

Vicky Zeng

Course Information

Website: https://www.cs.cmu.edu/~15281

Canvas: canvas.cmu.edu

Gradescope: gradescope.com

Communication: piazza.com

E-mail: feifang@cmu.edu

pvirtue@cmu.edu

Prerequisites/Corequisites
Course Scope

Announcements

Recitation starting this Friday

- Recommended. Materials are fair game for exams
- Choosing sections

Assignments:

- HW1 (online)
 - Released at the end of lecture
 - Due Tue 9/3, 10 pm
- P0: Python & Autograder Tutorial
 - Required, but worth zero points
 - Released at the end of lecture
 - Due Thu 9/5, 10 pm

Today

What is artificial intelligence?

A brief history of Al

Al applications and techniques

Designing Agents

An **agent** is an entity that *perceives* and *acts*.

Characteristics of the percepts,
environment, and action space
dictate techniques for selecting
actions

This course is about:

- General AI techniques for a variety of problem types
- Learning to recognize when and how a new problem can be solved with an existing technique

Pac-Man as an Agent


```
class Agent
```

function getAction(state)

return action

```
Agent 001 – Always choose 1
```

```
function getAction(
return 1
```

Agent 002 – Always choose 2

```
function getAction( numPiecesAvailable )
  return 2
```

Agent 004 – Choose the opposite of opponent

```
function getAction( numPiecesAvailable )
  return ?
```

Agent 007 – Whatever you think is best

```
function getAction( numPiecesAvailable )
  return ?
```

Agent 007 – Whatever you think is best

```
function getAction( numPiecesAvailable )

if numPiecesAvailable % 3 == 2
    return 2
    else
    return 1
```

Piazza Poll question

Games – Three "Intelligent" Agents

Which agent code is the most "intelligent"?

A: Search / Recursion

B: Encode the pattern

```
function getAction( numPiecesAvailable )

if numPiecesAvailable % 3 == 2
    return 2
    else
    return 1
```

```
10's value:Win
9's value:Lose
8's value:Win
7's value:Win
6's value:Lose
5's value:Win
4's value:Win
3's value:Lose
2's value:Win
1's value:Win
0's value:Lose
```

C: Record statistics of winning positions

Pieces Available	Take 1	Take 2
2	0%	100%
3	2%	0%
4	75 %	2%
5	4%	68%
6	5%	6%
7	60%	5%

Piazza Poll question

Games – Three "Intelligent" Agents

Which agent code is the most "intelligent"?

- A. Search / Recursion
- B. Encode multiple of 3 pattern
- C. Keep stats on winning positions

C: Record statistics of winning positions

Pieces Available	Take 1	Take 2
2	0%	100%
3	2%	0%
4	75 %	2%
5	4%	68%
6	5%	6%
7	60%	5%

Al in the News

https://www.youtube.com/watch?v=EfGD2qveGdQ

Sci-Fi Al?

Piazza Poll: What is Al?

The science of making machines that:

A: Think like people

C: Think rationally

B: Act like people

D: Act rationally

Turing Test

In 1950, Turing defined a test of whether a machine could "think"

"A human judge engages in a natural language conversation with one human and one machine, each of which tries to appear human. If judge can't tell, machine passes the Turing test"

Al Definition by John McCarthy

What is artificial intelligence

 It is the science and engineering of making intelligent machines, especially intelligent computer programs

What is intelligence

 Intelligence is the computational part of the ability to achieve goals in the world

AI Stack for CMU AI

"Al must understand the human needs and it must make smart design decisions based on that understanding"

A.I. TIMELINE

1950

TURING TEST

Computer scientist Alan Turing proposes a test for machine intelligence. If a machine can trick humans into thinking it is human, then it has intelligence

1955

A.I. BORN

Term 'artificial intelligence' is coined by computer scientist, John McCarthy to describe "the science and engineering of making intelligent machines"

1961

UNIMATE

First industrial robot, Unimate, goes to work at GM replacing humans on the assembly line

1964

ELIZA

Pioneering chatbot developed by Joseph Weizenbaum at MIT holds conversations with humans

1966

SHAKEY

The 'first electronic person' from Stanford, Shakey is a generalpurpose mobile robot that reasons about its own actions

A.I.

WINTER

Many false starts and dead-ends leave A.I. out in the cold

1997

DEEP BLUE

Deep Blue, a chessplaying computer from IBM defeats world chess emotionally intelligent champion Garry Kasparov

1998

KISMET

Cynthia Breazeal at MIT introduces KISmet, an robot insofar as it detects and responds to people's feelings

1999

AIBO

Sony launches first consumer robot pet dog autonomous robotic AiBO (Al robot) with skills and personality that develop over time

2002

ROOMBA

First mass produced vacuum cleaner from iRobot learns to navigate interface, into the and clean homes

2011

Apple integrates Siri, an intelligent virtual assistant with a voice iPhone 4S

2011

WATSON

IBM's question answering computer Watson wins first place on popular \$1M prize television quiz show Jeopardy

2014

EUGENE

Eugene Goostman, a chatbot passes the Turing Test with a third of judges believing Eugene is human

2014

ALEXA

Amazon launches Alexa, Microsoft's chatbot Tay an intelligent virtual assistant with a voice interface that completes inflammatory and shopping tasks

2016

TAY

goes roque on social media making offensive racist comments

2017

ALPHAGO

Google's A.I. AlphaGo beats world champion Ke Jie in the complex board game of Go, notable for its vast number (2170) of possible positions

A Brief History of Al

https://books.google.com/ngrams

Al Winter

- Russell & Norvig 2003, p. 24: "Al industry boomed from a few million dollars in 1980 to billions of dollars in 1988. Soon after that came a period called the 'Al Winter'".
- Expert systems became difficult to update, they could not learn, they were "brittle" (i.e., make grotesque mistakes when given unusual inputs)
- Over optimism leads to disappointment

Cat

Has ears

Has Fur

Has four legs

A Brief History of Al

1980s

1990s

2000s

Artificial Intelligence vs Machine Learning?

Course Topics

Part I: Making Decisions

- Fast search / planning
- Constraint satisfaction and optimization
- Adversarial and uncertain search
- Logic

Part II: Reasoning under Uncertainty

- Reinforcement learning
- Bayes' nets
- Game theory
- Human compatible Al

Throughout

Representation and reasoning

Applications

- Language, vision, robotics, games, ...
- Super-human performance in various tasks
- Al for Social Good

Libratus (Poker, January 2017)

How Machine Learning Works

While it is NOT the focus of this course, a brief introduction may help

Neural Network

Gradient Descent

What Can Al Do?

Quiz: Which of the following can be done at present?

- ✓ Play a decent game of table tennis?
- ✓ Play a decent game of Jeopardy?
- ✓ Drive safely along a curving mountain road?
- Drive safely across Pittsburgh?
- ✓ Buy a week's worth of groceries on the web?
- ➤ Buy a week's worth of groceries at Giant Eagle?
- ☐ Discover and prove a new mathematical theorem?
- Converse successfully with another person for an hour?
- Perform a surgical operation?
- ✓ Put away the dishes and fold the laundry?
- ✓ Translate spoken Chinese into spoken English in real time?
- **X** Write an intentionally funny story?

