Announcements

Assignments:

= P4
" Due tonight, 10 pm
" Check your slip days!

= HWO (online)
= Due Tue 11/5, 10 pm

Midterm:

= Tue 11/12, in-class
= See Piazza for details



Al;

Representation and Problem Solving

Bayes Nets: Independence

Instructors: Pat Virtue & Fei Fang
Slide credits: CMU Al and http://ai.berkeley.edu



Bayesian Networks

Bayes net
One node per random variable
DAG 0
One CPT per node: P(node | Parents(node) ) @

P(A,B,C,D) = P(A) P(B) P(C|A,B) P(D|C)

Encode joint distributions as product of conditional
distributions on each variable

P(X{,...,Xy) = HP(Xil Parents(X;))



Danielle Belgrave, Microsoft Research

B Microsoft | Research

Danielle Belgrave

Principal Researcher

https://www.microsoft.com/en-us/research/people/dabelgra/

Developmental Profiles of Eczema, Wheeze, and Rhinitis:

Two Population-Based Birth Cohort Studies

Danielle Belgrave, et al. PLOS Medicine, 2014
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748



https://www.microsoft.com/en-us/research/people/dabelgra/
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748

Independence




Independence

Two variables X and Y are (absolutely) independent if

Vx,y  Plx,y)=P(x) Ply)

= This says that their joint distribution factors into a product of two simpler
distributions

= Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:

Vx,y P(x | y)=P(x) or Vx,yPly|x)=Ply)

Example: two dice rolls Roll, and Roll,
= P(Roll,=5, Roll,=5) = P(Roll,=5) P(Roll,=5) = 1/6 x1/6 = 1/36
= P(Roll,=5 | Roll;=5) = P(Roll,=5)




Example: Independence

n fair, independent coin flips:

H |05 H |05 L H |05
T 0.5 T 0.5 T 0.5
N
—

P(X, X, ..., X.)

-

AL,




Piazza Poll 1

Are T and W independent?

P, (T,W)

T W P
hot sun 0.4
hot rain | 0.1
cold sun 0.2
cold rain | 0.3

P(T)

T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6

rain 0.4




Piazza Poll 1
Are T and W independent?

No P(T)
T P
hot 0.5
Pl (T, W) cold | 0.5 P2 (T, W) — P(T)P(W)

T W P T W P
hot sun 0.4 hot sun 0.3
hot rain | 0.1 hot rain | 0.2
cold su.n 0.2 P(W) cold su'n 0.3
cold rain | 0.3 cold rain | 0.2

W P

sun 0.6

rain 0.4




Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it
doesn't depend on whether | have a toothache:

= P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if | don’t have a cavity:
= P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
= P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:

= P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

= P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
=  One can be derived from the other easily



Conditional Independence
Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of
knowledge about uncertain environments.

X is conditionally independent of Y given Z

if and only if:
Vxy,z  Plx|y, z)=Plx| 2

or, equivalently, if and only if
Vxyz  Plx,y|2z)=Plx|z)Ply]| 2



Conditional Independence
What about this domain:

" Fire
= Smoke
= Alarm




Conditional Independence
What about this domain:

= Traffic
= Umbrella
= Raining




Conditional Independence and the Chain Rule

Chain rule:
P(X1, X3peeey Xp) = L1 POXG | Xqpeee) Xig)

Trivial decomposition:
P(Rain, Traffic, Umbrella) =

With assumption of conditional independence:
P(Rain, Traffic, Umbrella) =



Conditional Independence and the Chain Rule
<2 e

Chain rule:
P(X1, X3peeey Xp) = L1 POXG | Xqpeee) Xig)

Trivial decomposition:
P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:
P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes nets / graphical models help us express
conditional independence assumptions



Bayes Nets: Big Picture

Two problems with using full joint distribution tables as
our probabilistic models:

= Unless there are only a few variables, the joint is WAY too big to
represent explicitly

= Hard to learn (estimate) anything empirically about more than a
few variables at a time

Bayes nets: a technique for describing complex joint
distributions (models) using simple, local distributions
(conditional probabilities)

= More properly called graphical models

= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions




Graphical Model Notation

Nodes: variables (with domains)
= Can be assigned (observed) or unassigned

(unobserved)
Arcs: interactions
= Similar to CSP constraints
= |ndicate “direct influence” between variables
Toothache @

= Formally: encode conditional independence

For now: imagine that arrows mean direct
causation (in general, they don't!)



Example: Coin Flips

N independent coin flips

No interactions between variables: absolute independence




Example: Traffic

Variables:
= R:[trains
= T: There is traffic

Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?



Example: Traffic I

Let’s build a causal graphical model!

Variables

= T: Traffic

= R:Itrains

= |L: Low pressure
= D: Roof drips

= B: Ballgame

= C: Cavity




Example: Alarm Network

Variables

= B: Burglary

= A: Alarm goes off
= M: Mary calls

= J: John calls

= E: Earthquake!




Semantics Example

Joint distribution factorization example

Generic chain rule
" P(X1 .. X2) =11; P(X;| X1 ... Xi—1)

Burglary

P(B,E,A,J,M) =P(B) P(E|B) P(A|B,E) P(JIB,E,A) P(M|B,E,A,])

Earthquake

P(B,E,A,J,M) =P(B) P(E) P(A|B,E)P(J|A) P(M|A)

Bayes nets
» P(X; ...X5) =11; P(X;| Parents(X;))



Example: Alarm Network

Burglary

B P(B)

+b | 0.001

-b | 0.999
A J P(J|A)
+a | 4 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M | P(M|A)
+a | +m 0.7
+a | -m 0.3
-a | +m 0.01
-a | -m 0.99

E P(E)

+e | 0.002
-e | 0.998 |
B | E| A | PA|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
-b | +e | -a 0.71
-b | -e | +a 0.001
-b | -e | -a 0.999




Piazza Poll 2

Use the demo from the
course website to compute

P(—c,+s,—r,+w).

0.0
0.0004
0.001
0.036
0.18
0.198

. 0.324

G Mmoo >

P(S|C)
+5 01
+C
-3 0.9
+5 0.5
-C
-3 0.5

P(C)
+C 0.5
-C 0.5
P(R|C)
+T 0.8
+C
-T 0.2
+T 0.2
-C
- 0.8
P(W| S, R)
+W 099
+T
W 0.01
+35
. W 0.9
W 01
W 09 Local Variables
+T
W 0.1 Variable Value
-5
+W 0.99 temp_prob 1
-r
W 0.01 X Mone



Piazza Poll 2

P(C)
Use the demo from the -
course website to compute
P(S|C) P(R|C)
P(—c,+s,—r,+w).
. +5 01 ic +r 0.8
-5 09 -r 0.2
- +5 0.5 " +r 0.2
-5 0.5 -r 0.8
P(W|S,R)
o +W 0.99
=W 0.01
= W | 09
! W 0.1
W 0.9 Local Variables
o W 0.1 Variable Value
s . W 0.99 temp_prob 1
W 0.01 X Mone




Piazza Poll 3
Match the product of CPTs to the Bayes net.

(4] OO
B © C
. P(A)PBIAPCIB) P P(BIAPCIA) P4 P(B) P(CIA,B)
Il PPB)PCIAB)  PMA)P(BIA)PCIB) P4 P(BIA) P(C|A)

lIl.  P(A) P(B|A) P(C|A) P(4) P(B) P(C|A,B) P(4) P(B|A) P(C|B)



Conditional Independence Semantics

For the following Bayes nets, write the joint P(4, B, C)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

(4
oG



Conditional Independence Semantics

For the following Bayes nets, write the joint P(4, B, C)

1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

P(A) P(B|A) P(C|A, B)
P(A) P(B|A) P(C|B)
Assumption:

P(C|A,B) = P(C|B)

Cis independent from A given B

P(A) P(B|A) P(C|A,B)
P(A) P(B|A) P(C|A)
Assumption:

P(C|A,B) = P(C|A)

Cis independent from B given A

P(A) P(B|A) P(C|A, B)
P(A) P(B) P(C|A, B)
Assumption:

P(B|A) = P(B)

A is independent from B given { }



Causal Chains

This configuration is a “causal chain”

/_
AN

X: Low pressure Y: Rain Z: Traffic

P(xz,y,z) = P(z)P(y|lz)P(z]y)

E}»\ W PWJ

" Guaranteed X independentof Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Low pressure causes rain causes traffic,
high pressure causes no rain causes no
traffic

* |n numbers:

P(+y | +x)=1,P(-y | -x)=1,
P(+z|+y)=1,P(-z|-y)=1



Causal Chains

This configuration is a “causal chain” = Guaranteed X independent of Z given Y?
Loa=a £ P/ P(z,y,2)
P(zlz,y) =
) ] eab s
_ S~
': & jw = e
NN __ J
X: Low pressure Y: Rain Z: Traffic — P(Z|y)

Yes!

P(z,y,2z) = P(2)P(ylz)P(z]y) = Evidence along the chain “blocks” the

influence



Common Cause

This configuration is a “common cause”

Y: Project Praject
Due!
due

z
Y
$

P(z,y,z) = P(y)P(z|y) P(z|y)

X: Forums

Z: Lab full
busy

" Guaranteed X independentof Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

" Project due causes both forums busy
and lab full

* |n numbers:

P(+x | +y) =1, P(x | -y)=1,
P(+2 | +y)=1,P(2]y)=1



Common Cause

This configuration is a “common cause” = Guaranteed X and Z independent given Y?
Y: Project Praject Pl vy =
due Due P(Z|$,y) — ( v Y, )

P(x,y)

_ P@)P(zly) P(z]y)

P(y)P(z|y)
= P(z|y)
X: Forums
busy Yes!
P(x,y,z) = P(y)P(x|y)P(z|y) = Observing the cause blocks influence

between effects.



Common Effect

Last configuration: two causes of one
effect (v-structures)

X: Raining Y: Ballgame

Z: Traffic ‘

Are X and Y independent?

= Yes: the ballgame and the rain cause traffic, but
they are not correlated

= Still need to prove they must be (try it!)

Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

This is backwards from the other cases

= QObserving an effect activates influence between

possible causes.



Bayes Net Independence




Reachability

Recipe: shade evidence nodes, look for
paths in the resulting graph

Attempt 1: if two nodes are connected by
an undirected path not blocked by a
shaded node, they are conditionally
independent

Almost works, but not quite
= Where does it break?

= Answer: the v-structure at T doesn’t count as a
link in a path unless “active”




Active / Inactive Paths

Question: Are X and Y conditionally independent given
evidence variables {Z}?

= Yes, if Xand Y “d-separated” by Z

= Consider all (undirected) paths from Xto Y

= No active paths = independence!

A path is active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A < B — C where B is unobserved
= Common effect (aka v-structure)
A — B <~ C where B or one of its descendents is observed

All it takes to block a path is a single inactive segment

Active Triples

€ g

Inactive Triples

B



Bayes Ball

Question: Are X and Y conditionally independent given Active Triples Inactive Triples
evidence variables {Z}?

Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite
Information in Belief Networks and Influence Diagrams)." Proceedings of the Fourteenth
conference on Uncertainty in Artificial Intelligence. 1998.

€ g
B


http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Bayes Ball

Question: Are X and Y conditionally independent given
evidence variables {Z}?

1. ShadeinZ
2. Drop aball at X
3. The ball can pass through any path and is

blocked by any inactive path (ball can move either
direction on an edge)

4. If the ball reachesY, then X and Y are NOT
conditionally independent given Z

Active Triples

€ g

Inactive Triples

B



Bayes Ball

Active Paths

< > §

Inactive Paths



Piazza Poll 4

Is X1 independent from X, given X,?

X

X's



Piazza Poll 4

Is X1 independent from X, given X,?
No, the Bayes ball can travel through X5 and X:.




Piazza Poll 5

Is X, independent from X5 given X; and Xg?




Piazza Poll 5

Is X, independent from X5 given X; and Xg?
No, the Bayes ball can travel through Xz and X.




Conditional Independence Semantics

Every variable is conditionally independent of its non-descendants given its parents




Markov blanket

A variable’s Markov blanket consists of parents, children, children’s other parents

Every variable is conditionally independent of all other variables given its Markov blanket




Answer Any Query from Joint Distribution

Joint distributions are the best! ,
Joint

Problems with joints

Query
= We aren’t given the joint table
=  Usually some set of fl> P(a|e)

conditional probability tables

= Huge
= 1 variables with d values
= d" entries




Answer Any Query from Bayes Net

Bayes Net Joint

Query

> fl> P(a|e)

P(A) P(B|A) P(C|A) P(D|C) P(E|C)



Next: Answer Any Query from Bayes Net

Bayes Net

Query

> P(a|e)

P(A) P(B|A) P(C|A) P(D|C) P(E|C)



