
Announcements
Assignments:

▪ P4

▪ Due tonight, 10 pm

▪ Check your slip days!

▪ HW9 (online)

▪ Due Tue 11/5, 10 pm

Midterm:

▪ Tue 11/12, in-class

▪ See Piazza for details



AI: Representation and Problem Solving

Bayes Nets: Independence

Instructors: Pat Virtue & Fei Fang

Slide credits: CMU AI and http://ai.berkeley.edu



One node per random variable

DAG

One CPT per node: P(node | Parents(node) )

Bayes net

𝐴

𝐵

𝐶

𝐷

Bayesian Networks

𝑃 𝐴, 𝐵, 𝐶, 𝐷 = 𝑃 𝐴 𝑃(𝐵) 𝑃 𝐶 𝐴, 𝐵 𝑃 𝐷 𝐶

Encode joint distributions as product of conditional 
distributions on each variable

𝑃 𝑋1, … , 𝑋𝑁 =ෑ

𝑖

𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))



Danielle Belgrave, Microsoft Research

https://www.microsoft.com/en-us/research/people/dabelgra/

Developmental Profiles of Eczema, Wheeze, and Rhinitis:
Two Population-Based Birth Cohort Studies
Danielle Belgrave, et al. PLOS Medicine, 2014
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748

https://www.microsoft.com/en-us/research/people/dabelgra/
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001748


Independence



Two variables X and Y are (absolutely) independent if

x,y P(x, y) = P(x) P(y)

▪ This says that their joint distribution factors into a product of two simpler 
distributions

▪ Combine with product rule P(x,y) = P(x|y)P(y) we obtain another form:

x,y P(x | y) = P(x)   or     x,y P(y | x) = P(y)

Example: two dice rolls Roll1 and Roll2
▪ P(Roll1=5, Roll2=5)     =   P(Roll1=5) P(Roll2=5)  =  1/6 x 1/6  =  1/36
▪ P(Roll2=5 | Roll1=5)   =   P(Roll2=5)

Independence



Example: Independence
n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

2n



Piazza Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃1 𝑇,𝑊

𝑃(𝑇)

𝑃(𝑊)

Are T and W independent?



Piazza Poll 1

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

𝑃1 𝑇,𝑊 𝑃2 𝑇,𝑊 = 𝑃 𝑇 𝑃(𝑊)

𝑃(𝑇)

𝑃(𝑊)

Are T and W independent?

No



Conditional Independence

P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
▪ P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I don’t have a cavity:
▪ P(+catch | +toothache, -cavity) = P(+catch| -cavity)

Catch is conditionally independent of Toothache given Cavity:
▪ P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
▪ P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
▪ P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
▪ One can be derived from the other easily



Conditional Independence
Unconditional (absolute) independence very rare (why?)

Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

X is conditionally independent of Y given Z

if and only if: 

x,y,z P(x | y, z) = P(x | z)

or, equivalently, if and only if

x,y,z P(x, y | z) = P(x | z) P(y | z)



Conditional Independence

What about this domain:

▪ Fire
▪ Smoke
▪ Alarm



Conditional Independence

What about this domain:

▪ Traffic
▪ Umbrella
▪ Raining



Conditional Independence and the Chain Rule

Chain rule:

P(x1, x2,…, xn) = 
i
P(xi | x1,…, xi-1)

Trivial decomposition:

P(Rain, Traffic, Umbrella) =

With assumption of conditional independence:

P(Rain, Traffic, Umbrella) =



Conditional Independence and the Chain Rule

Chain rule:

P(x1, x2,…, xn) = 
i
P(xi | x1,…, xi-1)

Trivial decomposition:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain, Traffic)

With assumption of conditional independence:

P(Rain, Traffic, Umbrella) = P(Rain) P(Traffic | Rain) P(Umbrella | Rain)

Bayes nets / graphical models help us express 
conditional independence assumptions



Bayes’ Nets: Big Picture

Two problems with using full joint distribution tables as 
our probabilistic models:
▪ Unless there are only a few variables, the joint is WAY too big to 

represent explicitly
▪ Hard to learn (estimate) anything empirically about more than a 

few variables at a time

Bayes nets: a technique for describing complex joint 
distributions (models) using simple, local distributions 
(conditional probabilities)
▪ More properly called graphical models
▪ We describe how variables locally interact
▪ Local interactions chain together to give global, indirect 

interactions



Graphical Model Notation

Nodes: variables (with domains)
▪ Can be assigned (observed) or unassigned 

(unobserved)

Arcs: interactions
▪ Similar to CSP constraints
▪ Indicate “direct influence” between variables
▪ Formally: encode conditional independence

For now: imagine that arrows mean direct 
causation (in general, they don’t!)



Example: Coin Flips
N independent coin flips

No interactions between variables: absolute independence

X1 X2 Xn



Example: Traffic
Variables:
▪ R: It rains

▪ T: There is traffic

Model 1: independence

Why is an agent using model 2 better?

R

T

R

T

Model 2: rain causes traffic



Let’s build a causal graphical model!

Variables
▪ T: Traffic

▪ R: It rains

▪ L: Low pressure

▪ D: Roof drips

▪ B: Ballgame

▪ C: Cavity

Example: Traffic II



Example: Alarm Network

Variables
▪ B: Burglary

▪ A: Alarm goes off

▪ M: Mary calls

▪ J: John calls

▪ E: Earthquake!



Semantics Example

Joint distribution factorization example

Generic chain rule
▪ 𝑃 𝑋1…𝑋2 = ς𝑖 𝑃 𝑋𝑖 𝑋1…𝑋𝑖−1)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝐵 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐵, 𝐸, 𝐴 𝑃(𝑀|𝐵, 𝐸, 𝐴, 𝐽)

𝑃 𝐵, 𝐸, 𝐴, 𝐽,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝐽 𝐴 𝑃(𝑀|𝐴)

Bayes nets
▪ 𝑃 𝑋1…𝑋2 = ς𝑖 𝑃 𝑋𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

Burglary Earthquake

Alarm

John 
calls

Mary 
calls



Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99



Piazza Poll 2
Use the demo from the 
course website to compute 
𝑃 −𝑐,+𝑠, −𝑟, +𝑤 .

A. 0.0

B. 0.0004

C. 0.001

D. 0.036

E. 0.18

F. 0.198

G. 0.324



Piazza Poll 2
Use the demo from the 
course website to compute 
𝑃 −𝑐,+𝑠, −𝑟, +𝑤 .



Piazza Poll 3
Match the product of CPTs to the Bayes net.

I.

II.

III.

𝐴

𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵



For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶



For the following Bayes nets, write the joint 𝑃(𝐴, 𝐵, 𝐶)
1. Using the chain rule (with top-down order A,B,C)
2. Using Bayes net semantics (product of CPTs)

Conditional Independence Semantics

𝐴

𝐵 𝐶
𝐴 𝐵 𝐶

𝐴 𝐵

𝐶

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐵)
C is independent from A given B

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴

Assumption:
𝑃 𝐶 𝐴, 𝐵 = 𝑃(𝐶|𝐴)
C is independent from B given A

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴, 𝐵

𝑃 𝐴 𝑃 𝐵 𝑃 𝐶 𝐴, 𝐵

Assumption:
𝑃 𝐵 𝐴 = 𝑃(𝐵)
A is independent from B given { }



Causal Chains

This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

▪ Guaranteed X independent of Z ?  No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

▪ In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

This configuration is a “causal chain” ▪ Guaranteed X independent of Z given Y?

▪ Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

This configuration is a “common cause” ▪ Guaranteed X independent of Z ?  No!

▪ One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

▪ Example:

▪ Project due causes both forums busy 
and lab full 

▪ In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Cause

This configuration is a “common cause” ▪ Guaranteed X and Z independent given Y?

▪ Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy

Z: Lab full



Common Effect

Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

▪ Are X and Y independent?

▪ Yes: the ballgame and the rain cause traffic, but 
they are not correlated

▪ Still need to prove they must be (try it!)

▪ Are X and Y independent given Z?

▪ No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

▪ This is backwards from the other cases

▪ Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame



Bayes Net Independence



Reachability

Recipe: shade evidence nodes, look for 
paths in the resulting graph

Attempt 1: if two nodes are connected by 
an undirected path not blocked by a 
shaded node, they are conditionally 
independent

Almost works, but not quite
▪ Where does it break?

▪ Answer: the v-structure at T doesn’t count as a 
link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

Question: Are X and Y conditionally independent given 
evidence variables {Z}?
▪ Yes, if X and Y “d-separated” by Z
▪ Consider all (undirected) paths from X to Y
▪ No active paths = independence!

A path is active if each triple is active:
▪ Causal chain A → B → C where B is unobserved (either direction)
▪ Common cause A  B → C where B is unobserved
▪ Common effect (aka v-structure)

A → B  C where B or one of its descendents is observed

All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



Bayes Ball

Question: Are X and Y conditionally independent given 
evidence variables {Z}?

Active Triples Inactive Triples

Shachter, Ross D. "Bayes-Ball: Rational Pastime (for Determining Irrelevance and Requisite 
Information in Belief Networks and Influence Diagrams)." Proceedings of the Fourteenth 
conference on Uncertainty in Artificial Intelligence. 1998.

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Bayes Ball

Question: Are X and Y conditionally independent given 
evidence variables {Z}?

1. Shade in Z

2. Drop a ball at X

3. The ball can pass through any active path and is 
blocked by any inactive path (ball can move either 
direction on an edge)

4. If the ball reaches Y, then X and Y are NOT 
conditionally independent given Z

Active Triples Inactive Triples



Bayes Ball

Active Paths Inactive Paths



Piazza Poll 4
Is 𝑋1 independent from 𝑋6 given 𝑋2?



Piazza Poll 4
Is 𝑋1 independent from 𝑋6 given 𝑋2?

No, the Bayes ball can travel through 𝑋3 and 𝑋5.



Piazza Poll 5
Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?



Piazza Poll 5
Is 𝑋2 independent from 𝑋3 given 𝑋1 and 𝑋6?

No, the Bayes ball can travel through 𝑋5 and 𝑋6.



Conditional Independence Semantics

Every variable is conditionally independent of its non-descendants given its parents

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j



Markov blanket

A variable’s Markov blanket consists of parents, children, children’s other parents

Every variable is conditionally independent of all other variables given its Markov blanket

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X



Answer Any Query from Joint Distribution
Joint distributions are the best!

Problems with joints

▪ We aren’t given the joint table

▪ Usually some set of 
conditional probability tables

▪ Huge

▪ 𝑛 variables with 𝑑 values

▪ 𝑑𝑛 entries

Joint

Query

𝑃 𝑎 𝑒)



Answer Any Query from Bayes Net

Bayes Net Joint

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)



Next: Answer Any Query from Bayes Net

Bayes Net

Query

𝑃 𝑎 𝑒)

𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐴 𝑃 𝐷 𝐶 𝑃(𝐸|𝐶)


