
Warm-up as you walk in
https://high-level-4.herokuapp.com/experiment

https://rach0012.github.io/humanRL_website/ 1

https://high-level-4.herokuapp.com/experiment
https://rach0012.github.io/humanRL_website/

Announcements
Assignments:

 HW8 (written)

 Due 10/29 Tue, 10 pm

 P4

 Due 10/31 Thu, 10 pm

Piazza in-class post is ready to go

2

AI: Representation and Problem Solving

Reinforcement Learning II

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Learning Objective (RL I&II)
• Describe the relationships and differences between
• Markov Decision Processes (MDP) vs Reinforcement Learning (RL)

• Model-based vs Model-free RL

• Temporal-Difference Value Learning (TD Value Learning) vs Q-Learning

• Passive vs Active RL

• Off-policy vs On-policy Learning

• Exploration vs Exploitation

• Describe and implement
• TD (Value) Learning

• Q-Learning

• 𝜖-Greedy algorithm

• Approximate Q-learning (Feature-based)

• Derive weight update for Approximate Q-learning

This Lecture

4

MDP/RL Notation
𝑉 𝑠 = max

𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠
′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′
𝑄𝑘(𝑠

′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

TD (value) learning:

5

Reinforcement Learning
We still assume an MDP:
 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

Still looking for a policy (s)

New twist: don’t know T or R, so must try out actions

Big idea: Compute all averages over T using sample outcomes

6

Temporal Difference (Value) Learning

Task: Given policy 𝜋, learn state value 𝑉𝜋

Learn from every experience

 Update 𝑉𝜋(𝑠) each time we experience a transition (𝑠, 𝑎, 𝑠’, 𝑟)

 Likely outcomes 𝑠’ will contribute updates more often

 Move values toward latest sample (running average)

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Equivalent to:

7

Piazza Poll 1

What is the derivative of function 𝑓 𝑥 =
1

2
𝑦 − 𝑥 2 w.r.t. 𝑥 (𝑦 is a

constant)?

A: 𝑦 − 𝑥

B: −2𝑥

C: 𝑥 − 𝑦

8

Piazza Poll 1

What is the derivative of function 𝑓 𝑥 =
1

2
𝑦 − 𝑥 2 w.r.t. 𝑥 (𝑦 is a

constant)?

A: 𝑦 − 𝑥

B: −2𝑥

C: 𝑥 − 𝑦

𝑓 𝑥 =
1

2
𝑦 − 𝑥 2

𝛻𝑓 𝑥 =
1

2
× 2 × 𝑦 − 𝑥 × 𝛻(𝑦 − 𝑥) = 𝑥 − 𝑦

9

Temporal Difference (Value) Learning

Task: Given policy 𝜋, learn state value 𝑉𝜋

Learn from every experience

 Update 𝑉𝜋(𝑠) each time we experience a transition (𝑠, 𝑎, 𝑠’, 𝑟)

 Likely outcomes 𝑠’ will contribute updates more often

 Move values toward latest sample (running average)

(s)

s

s, (s)

s’Sample of V(s):

Update to V(s):

Equivalent to:

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 − 𝛼𝛻𝐸𝑟𝑟𝑜𝑟Equivalent to: 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑉𝜋 𝑠

2

10

Example: Temporal Difference (Value) Learning

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼[𝑟 + 𝛾𝑉𝜋(𝑠′) − 𝑉𝜋(𝑠)]

Input Policy 

Assume:  = 1

𝛼= 1/2

A

B C D

E

11

Example: Temporal Difference (Value) Learning

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼[𝑟 + 𝛾𝑉𝜋(𝑠′) − 𝑉𝜋(𝑠)]

Input Policy 

Assume:  = 1

𝛼= 1/2

A

B C D

E

𝑉𝜋 𝐵 ← 𝑉𝜋 𝐵 + 0.5 ∗ −2 + 1 ∗ 𝑉𝜋 𝐶 − 𝑉𝜋 𝐵 = 0 + 0.5 ∗ −2 = −1

𝑉𝜋 𝐶 ← 𝑉𝜋 𝐶 + 0.5 ∗ −2 + 1 ∗ 𝑉𝜋 𝐷 − 𝑉𝜋(𝐶) = 0 + 0.5 ∗ −2 + 8 = 3

12

Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates
with running sample averages

However, if we want to turn values into an improved policy, we’re sunk:

Again, we don’t know 𝑅 and 𝑇!

Solution: Directly learn Q-values, not state values

In fact, can directly learn true/optimal Q-values in a model-free way (Q-Learning)

Keep in mind that our ultimate goal is to find optimal policy!

a

s

s, a

s,a,s’

s’

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎
𝑄𝜋𝑜𝑙𝑑(𝑠, 𝑎)

= argmax
𝑎

𝑠′

𝑇 𝑠, 𝑎, 𝑠′ [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑(𝑠′)]

13

Extending TD Learning to Q-Value
Task: Given policy 𝜋, learn state value 𝑉𝜋

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′) − 𝑉𝜋(𝑠)]
where 𝑎 = 𝜋(𝑠)

Task: Given policy 𝜋, learn Q-state value 𝑄𝜋

Task: Directly learn true/optimal Q-state value 𝑄

Q-Learning. No given policy 𝜋.

14

a

s

s, a

s,a,s’

s’

Extending TD Learning to Q-Value
Task: Given policy 𝜋, learn state value 𝑉𝜋

𝑄𝜋 𝑠, 𝑎 ← 𝑄𝜋 𝑠, 𝑎 + 𝛼[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑄𝜋(𝑠′, 𝜋 𝑠′) − 𝑄𝜋(𝑠, 𝑎)]
where 𝑎 = 𝜋(𝑠)

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋(𝑠′) − 𝑉𝜋(𝑠)]
where 𝑎 = 𝜋(𝑠)

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)]

Q-Learning. No given policy 𝜋.

Task: Given policy 𝜋, learn Q-state value 𝑄𝜋

Task: Directly learn true/optimal Q-state value 𝑄

15

a

s

s, a

s,a,s’

s’

Active Reinforcement Learning

16

Active Reinforcement Learning

Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 You choose the actions now (no given policy 𝜋)

 Goal: learn the optimal policy / values

In this case:
 Learner makes choices!

 This is NOT offline planning! You actually take actions in the world and find out
what happens…

 Fundamental tradeoff: exploration vs. exploitation

17

Demo Q-Learning -- Gridworld

[Demo: Q-learning – gridworld (L10D2)] 18

Demo Q-Learning -- Crawler

[Demo: Q-learning – crawler (L10D3)] 19

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

20

Q-Learning
We’d like to do Q-value updates to each Q-state:

 But can’t compute this update without knowing T, R

Instead, compute average as we go

 Receive a sample transition (s,a,r,s’)

 This sample suggests

 But we want to consider our previous value of 𝑄(𝑠, 𝑎) (Why?)

 So keep a running average

𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

21
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 − 𝛼𝛻𝐸𝑟𝑟𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 =

1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄 𝑠, 𝑎

2

Demo Q-Learning Auto Cliff Grid

[Demo: Q-learning – auto – cliff grid (L11D1)] 22

Q-Learning Properties
Amazing result: Q-learning converges to the Q-value of the optimal
policy -- even if you’re acting suboptimally!

This is called off-policy learning: you learn the value of the optimal policy
while your behavior policy (how you act) is a different policy

In contrast, on-policy learning (e.g., TD value learning) estimates the
value of a policy while acting according to it

23

Q-Learning Properties
Caveats:

 You have to explore enough

 You have to eventually make the learning rate small enough

 … but not decrease it too quickly

 Basically, in the limit, it doesn’t matter how you select actions (!)

24

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, * Value / policy iteration

Evaluate a fixed policy  Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, * VI/PI on approx. MDP

Evaluate a fixed policy  PE on approx. MDP

Goal Technique

Compute V*, Q*, * Q-learning

Evaluate a fixed policy  TD/Value Learning

25

Exploration vs. Exploitation

26

How to Explore?

Several schemes for forcing exploration
 Simplest: random actions (-greedy)
 Every time step, flip a coin

 With (small) probability , act randomly

 With (large) probability 1-, act on current policy

 Problems with random actions?

 You do eventually explore the space, but keep
thrashing around once learning is done

 One solution: lower  over time
 Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)] 27

Demo Q-learning – Manual Exploration – Bridge Grid

28

Demo Q-learning – Epsilon-Greedy – Crawler

29

Exploration Functions

When to explore?
 Random actions: explore a fixed amount

 Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

Exploration function
 Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

 Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)] 30

Demo Q-learning – Exploration Function – Crawler

31

Regret
Even if you learn the optimal policy, you
still make mistakes along the way!

Regret: the difference between your
(expected) rewards, including youthful
suboptimality, and (expected) rewards if
you use an optimal policy in hindsight

Minimizing regret requires optimally
learning to be optimal

32

Which one has higher regret: random exploration or using

exploration function 𝑓 𝑢, 𝑛 = 𝑢 +
𝑘

𝑛
?

Regret
Even if you learn the optimal policy, you
still make mistakes along the way!

Regret: the difference between your
(expected) rewards, including youthful
suboptimality, and (expected) rewards if
you use an optimal policy in hindsight

Minimizing regret requires optimally
learning to be optimal

33

Which one has higher regret: random exploration or using

exploration function 𝑓 𝑢, 𝑛 = 𝑢 +
𝑘

𝑛
? The former

Approximate Q-Learning

34

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about
every single state!

 Too many states to visit them all in training

 Too many states to hold the q-tables in memory

Instead, we want to generalize:

 Learn about some small number of training states
from experience

 Generalize that experience to new, similar situations

 This is a fundamental idea in machine learning, and
we’ll see it over and over again

[demo – RL pacman] 35

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

36

Demo Q-Learning Pacman – Tiny – Watch All

37

Demo Q-Learning Pacman – Tiny – Silent Train

38

Demo Q-Learning Pacman – Tricky – Watch All

39

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)
 Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

40

Linear Value Functions

Using a feature representation, we can write a Q-value function (or state value
function) to approximate the Q-value (or state value) for any state using a few weights:

 𝑉𝒘(𝑠) = 𝑤1𝑓1(𝑠) + 𝑤2𝑓2(𝑠) + … + 𝑤𝑛𝑓𝑛(𝑠)

 𝑄𝒘(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + 𝑤2𝑓2(𝑠, 𝑎) + … + 𝑤𝑛𝑓𝑛(𝑠, 𝑎)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning: Q-Learning with Q-value function (a.k.a. Q-function)

41

Piazza Poll 2
What is the partial derivative of function

𝑔 𝑤1, 𝑤2 =
1

2
𝑦 − (𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥))

2

w.r.t. 𝑤1, i.e.,
𝜕𝑔(𝑤1,𝑤2)

𝜕𝑤1
?

Assume 𝑦 is a constant and 𝑓 is a known function that maps a vector in
ℝ𝑛 to a scalar

A: 𝑓1(𝑥)

B: 𝑦 − (𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥))

C: 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) − 𝑦

D: 𝑤1𝑓1 𝑥 + 𝑤2𝑓2 𝑥 − 𝑦 𝑓1(𝑥)

42

What is the partial derivative of function

𝑔 𝑤1, 𝑤2 =
1

2
𝑦 − (𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥))

2

w.r.t. 𝑤1, i.e.,
𝜕𝑔(𝑤1,𝑤2)

𝜕𝑤1
?

Assume 𝑦 is a constant and 𝑓 is a known function that maps a vector in
ℝ𝑛 to a scalar

A: 𝑓1(𝑥)

B: 𝑦 − (𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥))

C: 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) − 𝑦

D: 𝑤1𝑓1 𝑥 + 𝑤2𝑓2 𝑥 − 𝑦 𝑓1(𝑥)

Piazza Poll 2

43

Let ℎ 𝑤1, 𝑤2 = 𝑦 − (𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥))

Then 𝑔 𝑤1, 𝑤2 =
1

2
ℎ 𝑤1, 𝑤2

2

𝜕𝑔(𝑤1,𝑤2)

𝜕𝑤1
=
𝜕𝑔(𝑤1,𝑤2)

𝜕ℎ(𝑤1,𝑤2)

𝜕ℎ(𝑤1,𝑤2)

𝜕𝑤1

=
1

2
× 2 × ℎ 𝑤1, 𝑤2 × (−𝑓1 𝑥)

= −ℎ 𝑤1, 𝑤2 𝑓1 𝑥

Updating a linear value function
Original Q-learning: Update Q values directly (stored in a table)

Can be viewed as trying to reduce prediction error at s, a:

Approximate Q-Learning with Linear Q-Value Function:

Update weights to reduce prediction error at s, a:

44

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 − 𝛼𝛻𝐸𝑟𝑟𝑜𝑟 𝐸𝑟𝑟𝑜𝑟 =
1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄 𝑠, 𝑎

2

𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

Previous estimate Latest sample

𝑄𝒘(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + … + 𝑤𝑛𝑓𝑛(𝑠, 𝑎)

𝑤𝑖 ← 𝑤𝑖 − 𝛼
𝜕𝐸𝑟𝑟𝑜𝑟(𝑤1, 𝑤2, … , 𝑤𝑛)

𝜕𝑤𝑖
𝐸𝑟𝑟𝑜𝑟(𝑤) =

1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄𝑤 𝑠, 𝑎

2

Difference

Updating a linear value function

𝜕𝐸𝑟𝑟𝑜𝑟(𝑤)

𝜕𝑤𝑖
= (𝑄𝑤 𝑠, 𝑎 − 𝑠𝑎𝑚𝑝𝑙𝑒)

𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖
= 𝑄𝑤 𝑠, 𝑎 − 𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑖(𝑠, 𝑎)

45

𝑤𝑖 ← 𝑤𝑖 − 𝛼
𝜕𝐸𝑟𝑟𝑜𝑟(𝑤1, 𝑤2, … , 𝑤𝑛)

𝜕𝑤𝑖
𝐸𝑟𝑟𝑜𝑟(𝑤) =

1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄𝑤 𝑠, 𝑎

2

𝑄𝒘(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + … + 𝑤𝑛𝑓𝑛(𝑠, 𝑎)

Final Update Rule for Approximate Q-Learning with Linear Q-Value Function:

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎 𝑓𝑖(𝑠, 𝑎)

Original Q-Learning Update Rule:

𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

Approximate Q-Learning

Qualitative justification:

 Pleasant surprise: increase weights on +valued features,
decrease on – ones

 As a result, 𝑄𝑤 increased for states with the same (similar)
features too. Will now prefer all states with that state’s
features.

 Unpleasant surprise: decrease weights on +valued features,
increase on – ones

 Disprefer all states with that state’s features

46

Update Rule for Approximate Q-Learning with Linear Q-Value Function:

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎 𝑓𝑖(𝑠, 𝑎)

Example: Q-Pacman

[Demo: approximate Q-
learning pacman (L11D10)]

47

Demo Approximate Q-Learning -- Pacman

48

What if non-linear value function?

49

Update Rule for Approximate Q-Learning with Linear Q-Value Function:

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎 𝑓𝑖(𝑠, 𝑎)

𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

Update Rule for Q-Learning:

Update Rule for Approximate Q-Learning with differentiable Q-function 𝑄𝑤(𝑠, 𝑎):

What if non-linear value function?

50

Update Rule for Approximate Q-Learning with Linear Q-Value Function:

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎 𝑓𝑖(𝑠, 𝑎)

𝑄 𝑠, 𝑎 ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′
𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

Update Rule for Q-Learning:

Update Rule for Approximate Q-Learning with differentiable Q-function 𝑄𝑤(𝑠, 𝑎):

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎
𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖

If 𝑄𝒘(𝑠, 𝑎) = 𝑤1𝑓1(𝑠, 𝑎) + … + 𝑤𝑛𝑓𝑛(𝑠, 𝑎)

𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖
= 𝑓1(𝑠, 𝑎)

What if non-linear value function?

51

𝑤𝑖 ← 𝑤𝑖 − 𝛼
𝜕𝐸𝑟𝑟𝑜𝑟(𝑤1, 𝑤2, … , 𝑤𝑛)

𝜕𝑤𝑖
𝐸𝑟𝑟𝑜𝑟(𝑤) =

1

2
𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄𝑤 𝑠, 𝑎

2

Update Rule for Approximate Q-Learning with Q-function 𝑄𝑤(𝑠, 𝑎):

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎
𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖
Why?

𝜕𝐸𝑟𝑟𝑜𝑟(𝑤)

𝜕𝑤𝑖
= (𝑄𝑤 𝑠, 𝑎 − 𝑠𝑎𝑚𝑝𝑙𝑒)

𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖

𝑤𝑖 − 𝛼
𝜕𝐸𝑟𝑟𝑜𝑟 𝑤1, 𝑤2, … , 𝑤𝑛

𝜕𝑤𝑖
= 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max

𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎
𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖

What if non-linear value function?

52

Update Rule for Approximate Q-Learning with Q-function 𝑄𝑤(𝑠, 𝑎):

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎
𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖

Example: 𝑄𝑤(𝑠, 𝑎) = exp(𝑤1𝑓1(𝑠, 𝑎) + 𝑤2𝑓2(𝑠, 𝑎) + ⋯+𝑤𝑛𝑓𝑛(𝑠, 𝑎))

Update Rule:

𝜕𝑄𝑤 𝑠, 𝑎

𝜕𝑤𝑖
= exp 𝑤1𝑓1 𝑠, 𝑎 + 𝑤2𝑓2 𝑠, 𝑎 + ⋯+ 𝑤𝑛𝑓𝑛 𝑠, 𝑎 𝑓𝑖 𝑠, 𝑎

= 𝑄𝑤(𝑠, 𝑎)𝑓𝑖(𝑠, 𝑎)

𝑤𝑖 ← 𝑤𝑖 + 𝛼 𝑟 + 𝛾 max
𝑎′
𝑄𝑤 𝑠

′, 𝑎′ − 𝑄𝑤 𝑠, 𝑎 𝑄𝑤(𝑠, 𝑎)𝑓𝑖(𝑠, 𝑎)

Recent Reinforcement Learning Milestones

53

Deep Q-Networks

Deep Mind, 2015

Used a deep learning network to represent Q:
 Input is last 4 images (84x84 pixel values) plus score

49 Atari games, incl. Breakout, Space Invaders, Seaquest, Enduro

54

55

OpenAI Gym
2016+

Benchmark problems for learning agents

https://gym.openai.com/envs

56

TDGammon

1992 by Gerald Tesauro, IBM

4-ply lookahead using V(s) trained from 1,500,000 games of self-play

3 hidden layers, ~100 units each

Input: contents of each location plus several handcrafted features

Experimental results:
 Plays approximately at parity with world champion

 Led to radical changes in the way humans play backgammon

57

AlphaGo, AlphaZero
Deep Mind, 2016+

58

(Deep) Q-Learning for Combating (Naïve) Poacher

Wildlife protection
 Rangers make flexible decisions instead of sticking to a fixed patrol route

 Rangers and poachers may leave traces as they move

59

Tree markingLighters Old poacher campFootprints

Deep Reinforcement Learning for Green Security Games with Real-Time Information Yufei Wang, Zheyuan
Ryan Shi, Lantao Yu, Yi Wu, Rohit Singh, Lucas Joppa, Fei Fang In AAAI-19

(Deep) Q-Learning for Combating (Naïve) Poacher

60

Ranger

Snares

Poacher

Patrol Post

Autonomous Vehicles?

61

Backup Slides

62

Q-Learning and Least Squares

63

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

64

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

65

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”
66

