Announcements

Assignments:

- HW7 (online)
 - Due today, 10 pm
- HW8 (written)
 - Will be released after HW7 is due. Due 10/29 Tue, 10 pm
- P4
 - Due 10/31 Thu, 10 pm

Recitation worksheet for last week's material is available online Piazza in-class post is ready to go

Piazza Poll: Don't worry too much if you attended a lecture and missed one take of a poll or you missed a lecture which had many polls ③. We will take that into account.

Al: Representation and Problem Solving Reinforcement Learning

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Learning Objective (RL I&II)

- Describe the relationships and differences between
 - Markov Decision Processes (MDP) vs Reinforcement Learning (RL)
 - Model-based vs Model-free RL
 - Temporal-Difference Value Learning (TD Value Learning) vs Q-Learning
 - Passive vs Active RL
 - Off-policy vs On-policy Learning
 - Exploration vs Exploitation
- Describe and implement
 - TD (Value) Learning
 - Q-Learning
 - ϵ -Greedy algorithm
 - Approximate Q-learning (Feature-based)
- Derive weight update for Approximate Q-learning

Next Lecture

MDP/RL Notation

$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s'$$

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V(s')], \quad \forall s$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

$$V^\pi(s) \leftarrow V^\pi(s) + \alpha \left[r + \gamma \, V^\pi(s') - \, V^\pi(s) \right]$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Piazza Poll 1

Rewards may depend on any combination of *state*, *action*, *next state*. Which of the following are valid formulations of the Bellman equations?

A.
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

B.
$$V(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

C.
$$V(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')]$$

D.
$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

Piazza Poll 1

Rewards may depend on any combination of *state*, *action*, *next state*. Which of the following are valid formulations of the Bellman equations?

$$\checkmark A. V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

$$\checkmark C. V(s) = \max_{a} [R(s,a) + \gamma \sum_{s'} P(s'|s,a)V(s')]$$

$$\bigvee D. \ Q(s,a) = R(s,a) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q(s',a')$$

Recall

Which of the following are used in policy iteration?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall \, s$$
 Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \, s,a$$
 Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall \, s$$
 Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall \, s$$
 Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k^{\pi_{old}}(s')], \quad \forall \, s$$

Recall

Which of the following are used in policy iteration?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

VPolicy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Reinforcement Learning

Reinforcement learning

What if we didn't know P(s'|s,a) and R(s,a,s')?

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall \, s$$
Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \, s,a$$
Policy extraction:
$$\pi_V(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall \, s$$
Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,n(s))[R(s,a,s') + \gamma V_k^{\pi}(s')], \quad \forall \, s$$
Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k^{\pi}(s')], \quad \forall \, s$$

Reinforcement Learning

Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

[Video: AIBO WALK – initial]

Training

[Video: AIBO WALK – training]

Finished

Example: Sidewinding

Example: Toddler Robot

The Crawler!

Demo Crawler Bot

Reinforcement Learning

Still assume a Markov decision process (MDP):

- A set of states $s \in S$
- A set of actions (per state) A
- A model T(s,a,s')
- A reward function R(s,a,s')

Still looking for a policy $\pi(s)$

New twist: don't know T or R

- I.e. we don't know which states are good or what the actions do
- Must actually try actions and states out to learn

Reinforcement Learning

Experience world through episodes

$$(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$$

- You need many episodes ©
- Learn from your experience

Key questions:

- When experiencing the world, how to take the actions?
- Given the experience, how to learn from it?

Offline (MDPs) vs. Online (RL)

Learning to play online (Trial and error)

Model-Based Learning

Model-Based Learning

Model-Based Idea:

- Learn an approximate model based on experiences
- Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model

- Count outcomes s' for each s, a
- Normalize to give an estimate of $\widehat{T}(s, a, s')$
- Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')

Step 2: Solve the learned MDP

For example, use value iteration, as before

Example: Model-Based Learning

A policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s,a,s')$$
T(B, east, C) =
T(C, east, D) =
T(C, east, A) =

$$\widehat{R}(s,a,s')$$

R(B, east, C) = R(C, east, D) = R(D, exit, x) = ...

Example: Model-Based Learning

A policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10

Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10

Learned Model

$$\widehat{T}(s,a,s')$$

T(B, east, C) = 1.00 T(C, east, D) = 0.75 T(C, east, A) = 0.25

$\hat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1 R(D, exit, x) = +10

Any requirement for π to learn a reasonable \widehat{T} and \widehat{R} ?

Mid-Semester Feedback

5-min break

We would like to encourage you to fill the 15-281 mid-semester feedback forms online (links on Piazza, one for the course and one for the Tas)

Model-Free Learning

How can we find the optimal policy without building an explicit MDP model (R and T)?

Passive Reinforcement Learning

Given a policy π , learn how good it is.

"Passive" in the sense that the agent does not "choose" action itself.

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy $\pi(s)$
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

Goal: Compute values for each state under π

Idea: Average together observed sample values

- Act according to π
- Every time you visit a state, write down what the sum of discounted rewards turned out to be
- Average those samples

This is called direct evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 **Output Values**

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 2

B, east, C, -1 C, east, D, -1 D, exit, x, +10

Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 **Output Values**

	-10 A	
+8 B	+4	+10 D
	-2 E	

Problems with Direct Evaluation

What's good about direct evaluation?

- It's easy to understand
- It doesn't require any knowledge of T, R
- It eventually computes the correct average values, using just sample transitions

What bad about it?

- It wastes information about state connections (Markov property)
- Each state must be learned separately
- So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Simplified Bellman updates calculate V for a fixed policy π :

■ Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0, \forall s$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s$$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Luckily, you have access to the environment and you can try it out

Key question: how can we do this update to V without knowing T and R?

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s$$

How will you evaluate a biased coin / average age of students in 15-281? First idea: Take samples of outcomes s' (by taking the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$

Almost! But we can't rewind time to get sample after sample from state s.

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s$$
$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_i$$

In the extreme case, we can just take one sample (n = 1)

$$V_{k+1}^{\pi}(s) \leftarrow sample$$

But this is very high variance!

Second idea: Make use of the value of $V_k^{\pi}(s)$. Use running average.

$$V_{k+1}^{\pi}(s) \leftarrow (1-\alpha)V_k^{\pi}(s) + \alpha \times sample$$

Exponential Moving Average

Exponential moving average

The running interpolation update:

$$\bar{x}_n = (1 - \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$$

Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')], \forall s$$

You only have access to a stochastic environment.

You cannot fully control which state you will be at and directly jump to each of the states one by one to update V^{π} .

Third idea: Only update one state s at a time (the state you are in) as you try out the policy in the environment

B, east, C, -2

$$sample=R(s,\pi(s),s') + \gamma V_k^{\pi}(s') = -2 + 1 * V^{\pi}(C) = -2$$

Temporal Difference (Value) Learning

Putting the ideas together: Temporal Difference (Value) Learning!

• Task: Given policy π , learn state value V^{π}

Learn from every experience

- Update $V^{\pi}(s)$ each time we experience a transition (s, a, s', r)
- Likely outcomes s' will contribute updates more often
- Move values toward latest sample (running average)

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$$

Equivalent to:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$

