
Announcements
Assignments:

 HW7 (online)

 Due today, 10 pm

 HW8 (written) 

 Will be released after HW7 is due. Due 10/29 Tue, 10 pm

 P4

 Due 10/31 Thu, 10 pm

Recitation worksheet for last week’s material is available online

Piazza in-class post is ready to go

Piazza Poll: Don’t worry too much if you attended a lecture and missed one take of a poll 
or you missed a lecture which had many polls . We will take that into account.
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AI: Representation and Problem Solving

Reinforcement Learning

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu



Learning Objective (RL I&II)
• Describe the relationships and differences between
• Markov Decision Processes (MDP) vs Reinforcement Learning (RL)

• Model-based vs Model-free RL

• Temporal-Difference Value Learning (TD Value Learning) vs Q-Learning

• Passive vs Active RL

• Off-policy vs On-policy Learning

• Exploration vs Exploitation

• Describe and implement
• TD (Value) Learning

• Q-Learning

• 𝜖-Greedy algorithm

• Approximate Q-learning (Feature-based)

• Derive weight update for Approximate Q-learning 

Next Lecture
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MDP/RL Notation
𝑉 𝑠 = max

𝑎
 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎)𝑉(𝑠′)

𝑉 𝑠 = max
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

𝑉𝑘+1 𝑠 = max
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

𝑉𝜋 𝑠 ← 𝑉𝜋 𝑠 + 𝛼 𝑟 + 𝛾 𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾 max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

Bellman equations:

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

Standard expectimax:

Q-learning:

TD (value) learning:
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Piazza Poll 1
Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

A. 𝑉 𝑠 = max
𝑎

 𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

B. 𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

 𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑉 𝑠′

C. 𝑉 𝑠 = max
𝑎

[𝑅 𝑠, 𝑎 + 𝛾  𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑉 𝑠′

D. 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾  𝑠′𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄(𝑠′, 𝑎′)
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Piazza Poll 1
Rewards may depend on any combination of state, action, next state.

Which of the following are valid formulations of the Bellman equations?

A. 𝑉 𝑠 = max
𝑎

 𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′

B. 𝑉 𝑠 = 𝑅 𝑠 + 𝛾max
𝑎

 𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑉 𝑠′

C. 𝑉 𝑠 = max
𝑎

[𝑅 𝑠, 𝑎 + 𝛾  𝑠′𝑃 𝑠′ 𝑠, 𝑎 𝑉 𝑠′

D. 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾  𝑠′𝑃 𝑠′ 𝑠, 𝑎 max
𝑎′

𝑄(𝑠′, 𝑎′)
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Recall
Which of the following are used in policy iteration?

𝑉𝑘+1 𝑠 = max
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:
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Recall
Which of the following are used in policy iteration?

𝑉𝑘+1 𝑠 = max
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:
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Reinforcement Learning
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Reinforcement learning
What if we didn’t know 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠, 𝑎, 𝑠’)?

𝑉𝑘+1 𝑠 = max
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝑘 𝑠′ , ∀ 𝑠

𝑄𝑘+1 𝑠, 𝑎 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎′

𝑄𝑘(𝑠
′, 𝑎′)] , ∀ 𝑠, 𝑎

𝜋𝑉 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 [𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉 𝑠′ ] , ∀ 𝑠

𝑉𝑘+1
𝜋 𝑠 =  

𝑠′

𝑃 𝑠′ 𝑠, 𝜋 𝑠 [𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ ] , ∀ 𝑠

𝜋𝑛𝑒𝑤 𝑠 = argmax
𝑎

 

𝑠′

𝑃 𝑠′ 𝑠, 𝑎 𝑅 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋𝑜𝑙𝑑 𝑠′ , ∀ 𝑠

Value iteration:

Q-iteration:

Policy extraction:

Policy improvement:

Policy evaluation:

10



Reinforcement Learning

Basic idea:
 Receive feedback in the form of rewards

 Agent’s utility is defined by the reward function

 Must (learn to) act so as to maximize expected rewards

 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r
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Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004] 12



Example: Learning to Walk

Initial [Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004] 13



Example: Learning to Walk

Training [Video: AIBO WALK – training][Kohl and Stone, ICRA 2004] 14



Example: Learning to Walk

Finished [Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004] 15



Example: Sidewinding

[Andrew Ng]
[Video: SNAKE – climbStep+sidewinding] 16



Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005]
[Video: TODDLER – 40s] 17



The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3] 18



Demo Crawler Bot
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Still assume a Markov decision process (MDP):
 A set of states s  S

 A set of actions (per state) A

 A model T(s,a,s’)

 A reward function R(s,a,s’)

Still looking for a policy (s)

New twist: don’t know T or R
 I.e. we don’t know which states are good or what the actions do

 Must actually try actions and states out to learn

Reinforcement Learning
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Reinforcement Learning

 Experience world through episodes

 You need many episodes 

 Learn from your experience

Key questions:

When experiencing the world, how to take the actions?

 Given the experience, how to learn from it?

r

a

s

s, a

s’

a’

s’, a’

s’’
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Offline (MDPs) vs. Online (RL)

Planning offline Learning to play online
(Trial and error)
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Model-Based Learning
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Model-Based Learning
Model-Based Idea:
 Learn an approximate model based on experiences
 Solve for values as if the learned model were correct

Step 1: Learn empirical MDP model
 Count outcomes s’ for each s, a
 Normalize to give an estimate of
 Discover each when we experience (s, a, s’)

Step 2: Solve the learned MDP
 For example, use value iteration, as before
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A policy 

Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) =
T(C, east, D) =
T(C, east, A) = 
…

R(s,a,s’).
R(B, east, C) = 
R(C, east, D) = 
R(D, exit, x) = 

…

Example: Model-Based Learning
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Assume:  = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…

Example: Model-Based Learning

A policy 

Any requirement for 𝜋 to learn a reasonable  𝑇 and  𝑅?
26



Mid-Semester Feedback
5-min break

We would like to encourage you to fill the 15-281 mid-semester 
feedback forms online (links on Piazza, one for the course and one for 
the Tas)
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Model-Free Learning

How can we find the optimal 
policy without building an explicit 
MDP model (R and T)?
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Passive Reinforcement Learning

Given a policy 𝜋, learn 
how good it is.

“Passive” in the sense 
that the agent does not 
“choose” action itself.
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Passive Reinforcement Learning

Simplified task: policy evaluation
 Input: a fixed policy (s)

 You don’t know the transitions T(s,a,s’)

 You don’t know the rewards R(s,a,s’)

 Goal: learn the state values

In this case:
 Learner is “along for the ride”

 No choice about what actions to take

 Just execute the policy and learn from experience

 This is NOT offline planning!  You actually take actions in the world.
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Direct Evaluation

Goal: Compute values for each state under 

Idea: Average together observed sample values
 Act according to 

 Every time you visit a state, write down what the sum of 
discounted rewards turned out to be

 Average those samples

This is called direct evaluation
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Example: Direct Evaluation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E
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Example: Direct Evaluation

Input Policy 

Assume:  = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4

E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2
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Problems with Direct Evaluation

What’s good about direct evaluation?
 It’s easy to understand

 It doesn’t require any knowledge of T, R

 It eventually computes the correct average values, 
using just sample transitions

What bad about it?
 It wastes information about state connections (Markov 

property)

 Each state must be learned separately

 So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?
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Can We Use Policy Evaluation?

Simplified Bellman updates calculate V for a fixed policy 𝜋:
 Each round, replace V with a one-step-look-ahead layer over V

 This approach fully exploited the connections between the states
 Unfortunately, we need T and R to do it!
 Luckily, you have access to the environment and you can try it out

Key question: how can we do this update to V without knowing T and R?

(s)

s

s, (s)

s, (s),s’

s’

𝑉𝑘+1
𝜋 𝑠 ←  

𝑠′

𝑇 𝑠, 𝜋 𝑠 , 𝑠′ [𝑅(𝑠, 𝜋 𝑠 , 𝑠′) + 𝛾𝑉𝑘
𝜋(𝑠′)] , ∀𝑠

𝑉0
𝜋 𝑠 = 0, ∀𝑠
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Can We Use Policy Evaluation?

How will you evaluate a biased coin / average age of students in 15-281?

First idea: Take samples of outcomes s’ (by taking the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.

𝑉𝑘+1
𝜋 𝑠 ←  

𝑠′

𝑇 𝑠, 𝜋 𝑠 , 𝑠′ [𝑅(𝑠, 𝜋 𝑠 , 𝑠′) + 𝛾𝑉𝑘
𝜋(𝑠′)] , ∀𝑠

36



Can We Use Policy Evaluation?

Second idea: Make use of the value of 𝑉𝑘
𝜋(𝑠). Use running average.

𝑉𝑘+1
𝜋 𝑠 ←  

𝑠′

𝑇 𝑠, 𝜋 𝑠 , 𝑠′ [𝑅(𝑠, 𝜋 𝑠 , 𝑠′) + 𝛾𝑉𝑘
𝜋(𝑠′)] , ∀𝑠

In the extreme case, we can just take one sample (𝑛 = 1)

𝑉𝑘+1
𝜋 𝑠 ← 𝑠𝑎𝑚𝑝𝑙𝑒

But this is very high variance!

𝑉𝑘+1
𝜋 𝑠 ← 1 − 𝛼 𝑉𝑘

𝜋 𝑠 + 𝛼 × 𝑠𝑎𝑚𝑝𝑙𝑒
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Exponential Moving Average

Exponential moving average 
 The running interpolation update:

 Makes recent samples more important:

 Forgets about the past (distant past values were wrong anyway)

Decreasing learning rate (alpha) can give converging averages
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Can We Use Policy Evaluation?

You only have access to a stochastic environment. 

You cannot fully control which state you will be at and directly jump to 
each of the states one by one to update 𝑉𝜋.

Third idea: Only update one state 𝑠 at a time (the state you are in) as 
you try out the policy in the environment

𝑉𝑘+1
𝜋 𝑠 ←  

𝑠′

𝑇 𝑠, 𝜋 𝑠 , 𝑠′ [𝑅(𝑠, 𝜋 𝑠 , 𝑠′) + 𝛾𝑉𝑘
𝜋(𝑠′)] , ∀𝑠

A

B C D

E

B, east, C, -2

𝑠𝑎𝑚𝑝𝑙𝑒=𝑅 𝑠, 𝜋 𝑠 , 𝑠′ + 𝛾𝑉𝑘
𝜋 𝑠′ = −2 + 1 ∗ 𝑉𝜋 𝐶 = −2
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Temporal Difference (Value) Learning

Putting the ideas together: Temporal Difference (Value) Learning!

 Task: Given policy 𝜋, learn state value 𝑉𝜋

Learn from every experience

 Update 𝑉𝜋(𝑠) each time we experience a transition (𝑠, 𝑎, 𝑠’, 𝑟)

 Likely outcomes 𝑠’ will contribute updates more often

 Move values toward latest sample (running average)

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Equivalent to:
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