Warm-up as You Walk In

Given

- Set actions (persistent/static)
- Set states (persistent/static)
- Function T(s,a,s_prime)

Write the pseudo code for:

function V(s) return value

that implements:

$$V(s) = \max_{a \in actions} \sum_{s' \in states} T(s, a, s')V(s')$$

Announcements

Assignments:

- P3: Optimization; Due 10/17 Thu, 10 pm
- HW6 (online) 10/15 Tue, 10 pm
- HW7 (online) 10/22 Tue, 10 pm; Will be released today

Lectures: 4 lectures by Dr. Fei Fang on MDP/RL, followed by 4 lectures by Dr. Pat Virtue on Bayes' Nets

Recitations canceled on October 18 (Mid-Semester Break) and October 25 (Day for Community Engagement). Recitation worksheet available (reference for midterm/final)

New: Piazza post for In-class Questions

AI: Representation and Problem Solving

Markov Decision Processes

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI and http://ai.berkeley.edu

Learning Objectives

- Describe the definition of Markov Decision Process
- Compute utility of a reward sequence given discount factor
- Define policy and optimal policy of an MDP
- Define state-value and (true) state value of an MDP
- Define Q-value and (true) Q value of an MDP
- Derive optimal policy from (true) state value or (true) Q-values

Next Lecture

Recall: Minimax Notation

$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

$$\hat{a} = \underset{a}{\operatorname{argmax}} V(s'),$$
where $s' = result(s, a)$

Recall: Expectations

Max node notation

$$V(s) = \max_{a} V(s'),$$

where $s' = result(s, a)$

Chance node notation

$$V(s) = \sum_{s'} P(s') V(s')$$

Expectimax Notation

$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) V(s')$$

Warm-up as You Walk In

Given

- Set actions (persistent/static)
- Set states (persistent/static)
- Function T(s,a,s_prime)

Write the pseudo code for:

function V(s) return value

that implements:

$$V(s) = \max_{a \in actions} \sum_{s' \in states} T(s, a, s')V(s')$$

MDP Notation

Policy improvement:

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$
Bellman equations:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')]$$
Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V_k(s')], \quad \forall \, s$$
Q-iteration:
$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall \, s,a$$
Policy extraction:
$$\pi_V(s) = \arg\max_{a} \sum_{s'} P(s'|s,a)[R(s,a,s') + \gamma V(s')], \quad \forall \, s$$
Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall \, s$$

 $\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')],$

MDP Notation

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s, a)V(s')$$

Bellman equations:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy extraction:
$$\pi_V(s) = \operatorname*{argmax}_a \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V(s')], \quad \forall \, s$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall \, s'$$

Non-Deterministic Search

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - If agent takes action North
 - 80% of the time: Get to the cell on the North (if there is no wall there)
 - 10%: West; 10%: East
 - If path after roll dice blocked by wall, stays put
- The agent receives rewards each time step
 - "Living" reward (can be negative)
 - Additional reward at pit or target (good or bad) and will exit the grid world afterward
- Goal: maximize sum of rewards

Grid World Actions

Deterministic Grid World

Stochastic Grid World

Markov Decision Processes

An MDP is defined by a tuple (S,A,T,R):

- S: a set of states
- A: a set of actions
- T: a transition function
 - T(s, a, s') where $s \in S$, $a \in A$, $s' \in S$ is P(s' | s, a)
- R: a reward function
 - R(s, a, s') is reward at this time step
 - Sometimes just R(s) or R(s')
- Sometimes also have
 - γ : discount factor (introduced later)
 - μ : distribution of initial state (or just a start state s_0)
 - Terminal states: processes end after reaching these states

The Grid World problem as an MDP

 $R(s_{4,2}, exit, s_{virtual_terminal})=-1$

 $R(s_{4,2})$ =-1, no virtual terminal state

How to define the terminal states and reward function for the Grid World problem?

Demo of Gridworld

Markov Decision Processes

An MDP is defined by a tuple (S,A,T,R)

Why is it called Markov Decision Process?

Decision:

Process:

Markov Decision Processes

An MDP is defined by a tuple (S,A,T,R)

Why is it called Markov Decision Process?

Decision:

Agent decides what action to take in each time step

Process:

The system (environment + agent) is changing over time

What is Markov about MDPs?

Markov property: Conditional on the present state, the future and the past are independent

In MDP, it means outcome of an action depend only on current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Recall in search, successor function only depends on current state (not the history)

Andrey Markov (1856-1922) Russian mathematician

Policies

In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

For MDPs, we focus on policies

- Policy = map of states to actions
- π (s) gives an action for state s

We want an optimal policy $\pi^*: S \to A$

 An optimal policy is one that maximizes expected utility if followed

Policies

Recall: An MDP is defined S,A,T,R

Keep S,A,T fixed, optimal policy may vary given different R

What is the optimal policy if R(s,a,s')=-1000 for all states other than pit and target?

What is the optimal policy if R(s,a,s')=0 for all states other than pit and target, and reward=1000 and -1000 at pit and target respectively?

Which sequence of optimal policies matches the following sequence of living rewards:

 $\{-0.01, -0.03, -0.04, -2.0\}$

- I. {B, A, C, D}
- II. {B, C, A, D}
- III. {C, B, A, D}
- IV. {D, A, C, B}

Which sequence of optimal policies matches the following sequence of living rewards:

 $\{-0.01, -0.03, -0.04, -2.0\}$

- I. {B, A, C, D}
- II. {B, C, A, D}
- III. {C, B, A, D}
- IV. {D, A, C, B}

Optimal Policies

$$R(s) = -0.01$$

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Example: Racing

Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: *Slow, Fast*

Racing Search Tree

Can we use expectimax for MDP directly?

MDP Search Trees

Each MDP state projects an expectimax-like search tree

Utilities of Sequences

Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less? [1, 2, 2] or [2, 3, 4]

Now or later? [0, 0, 1] or [1, 0, 0]

Discounting

It's reasonable to maximize the sum of rewards
It's also reasonable to prefer rewards now to rewards later
One solution: utility of rewards decay exponentially

Discounting

How to discount?

 Each time we descend a level, we multiply in the discount once

Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

What is the value of U([2,4,8]) with $\gamma = 0.5$? U(·) is the total utility of a reward sequence

- A. 3
- B. 6
- C. 7
- D. 14

Bonus: What is the value of U([8,4,2]) with $\gamma = 0.5$?

What is the value of U([2,4,8]) with $\gamma = 0.5$? U(·) is the total utility of a reward sequence

- A. 3
- B. 6
- C. 7
- D. 14

$$\gamma^0 \times 2 + \gamma^1 \times 4 + \gamma^2 \times 8 = 2 + 0.5 \times 4 + 0.5 \times 0.5 \times 8 = 2 + 2 + 2 = 6$$

Bonus: What is the value of U([8,4,2]) with $\gamma = 0.5$?

$$\gamma^0 \times 8 + \gamma^1 \times 4 + \gamma^2 \times 2 = 8 + 0.5 \times 4 + 0.5 \times 0.5 \times 2 = 8 + 2 + 0.5 = 10.5$$

Stationary Preferences

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$

Then: there are only two ways to define utilities

- Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
- Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

Question

What is the minimum and maximum possible length of reward sequence in this grid world problem?

Question

What is the minimum and maximum possible length of reward sequence in this grid world problem?

Infinite Utilities?!

What if the sequence is infinite? Do we get infinite utility?

■ With discounting γ where $0 < \gamma < 1$ Assume $|r_t| \le R_{max}$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

■ Smaller γ means smaller "horizon" — shorter term focus

Optimal Policy with Discounting

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

For $\gamma = 1$, what is the optimal policy?

10 | 1

For $\gamma = 0.1$, what is the optimal policy?

10 1

For which γ are West and East equally good when in state d?

Optimal Policy with Discounting

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic

For $\gamma = 1$, what is the optimal policy?

For $\gamma = 0.1$, what is the optimal policy?

For which γ are West and East equally good when in state d?

$$\gamma^3 \times 10 = \gamma^1 \times 1$$

MDP Quantities

Markov decision processes:

- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)
- Start state s₀

MDP quantities so far:

- Policy = map of states to actions
- Utility = sum of (discounted) rewards

Solving MDPs

MDP Quantities

Markov decision processes:

- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)
- Start state s₀

MDP quantities:

- Policy = map of states to actions
- Utility = sum of (discounted) rewards
- (State) Value = expected utility starting from a state (max node)
- Q-Value = expected utility starting from a state-action pair, i.e., q-state (chance node)

MDP Optimal Quantities

- The optimal policy: $\pi^*(s)$ = optimal action from state s
- The (true) value (or utility) of a state s:
 V*(s) = expected utility starting in s and acting optimally
- The (true) value (or utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

Solve MDP: Find π^* , V^* and/or Q^*

What is the optimal policy?

What is the optimal policy?

May not equal $\underset{a}{\operatorname{argmax}} V^*(s')$ where s' is the most likely state after taking action a

V*(s) = expected utility starting in s and acting optimally

$$\pi^{*}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) * \underbrace{(R(s,a,s') + \gamma V^{*}(s'))}_{=0}$$

$$= \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) V^{*}(s')$$

What is the optimal policy?

$$\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$$

What is the optimal policy?

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

What is the optimal policy?

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) * (R(s,a,s') + \gamma V^*(s')) \neq \underset{a}{\operatorname{argmax}} V^*(s')$$

What is the optimal policy?

What is the optimal policy?

$$\pi^*(s) = \operatorname*{argmax}_a Q^*(s, a)$$

What is the optimal policy?

Backup Slides

What is $V^*(s_{1,1})$?

What is $\pi^*(s_{1,1})$?

Let $V^*(s_{1,1}) = x$.

What is $V^*(s_{1,1})$?

If $\pi^*(s_{1,1})$ =North: x=0+0.9*(0.8*0.57+0.1*x+0.1*0.43) \Rightarrow x=0.493

If $\pi^*(s_{1,1})$ = South: x=0+0.9*(0.8*x+0.1*x+0.1*0.43) \Rightarrow x=0.203

But when x=0.203, taking action North leads to higher expected value. Contradiction.

What is $\pi^*(s_{1,1})$?

