
Announcements
Midterm1

 Grade Released

Assignments:

 HW5 (written)

 Due 10/8 Tue, 10 pm 

 HW6 (online)

 Will be released today, Due 10/15 Tue, 10 pm

 P3: Optimization – expected average completion time < P2

 Due 10/17 Thu, 10 pm

Final exam: Thursday, Dec 12, 1-4pm, location TBD



AI: Representation and Problem Solving

Integer Programming

Instructors: Fei Fang & Pat Virtue

Slide credits: CMU AI, http://ai.berkeley.edu



Learning Objectives
• Formulate a problem as a Integer (Linear) Program (IP or ILP)

• Write down the Linear Program (LP) relaxation of an IP

• Plot the graphical representation of an IP and find the optimal 
solution

• Understand the relationship between optimal solution of an IP and 
the optimal solution of the relaxed LP

• Describe and implement branch-and-bound algorithm



Linear Programming
We are trying healthy by finding the optimal amount of food to purchase.

We can choose the amount of stir-fry (ounce) and boba (fluid ounces).

Healthy Squad Goals

 2000 ≤ Calories ≤ 2500

 Sugar ≤ 100 g

 Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per oz) 1 100 3 20

Boba (per fl oz) 0.5 50 4 70

What is the cheapest way to stay “healthy” with this menu?

How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Linear Programming  Integer Programming
We are trying healthy by finding the optimal amount of food to purchase.

We can choose the amount of stir-fry (bowls) and boba (glasses).

Healthy Squad Goals

 2000 ≤ Calories ≤ 2500

 Sugar ≤ 100 g

 Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per bowl) 1 100 3 20

Boba (per glass) 0.5 50 4 70

What is the cheapest way to stay “healthy” with this menu?

How much stir-fry (ounce) and boba (fluid ounces) should we buy?



Problem Formulation
Formulate Diet Problem with integer constraints as an 
optimization problem

Healthy Squad Goals

 2000 ≤ Calories ≤ 2500

 Sugar ≤ 100 g

 Calcium ≥ 700 mg

Food Cost Calories Sugar Calcium

Stir-fry (per oz) 1 100 3 20

Boba (per fl oz) 0.5 50 4 70

min
𝑥1, 𝑥2

1 𝑥1 + 0.5 𝑥2

s.t. 100 𝑥1 + 50 𝑥2 ≥ 2000
100 𝑥1 + 50 𝑥2 ≤ 2500
3 𝑥1 + 4 𝑥2 ≤ 100
20 𝑥1 + 70 𝑥2 ≥ 700

𝑥1, 𝑥2 ∈ ℤ



Linear Programming vs Integer Programming
Linear objective with linear constraints, but now with additional

constraint that all values in 𝒙must be integers

min
𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

We could also do:

 Even more constrained: Binary Integer Programming (BIP)

 A hybrid: Mixed Integer Linear Programming (MIP or MILP)

min
𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ𝑁

Notation Alert!



Integer Programming: Graphical Representation
Just add a grid of integer points onto our LP representation

min
𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ𝑁

min
𝑥1, 𝑥2

1 𝑥1 + 0.5 𝑥2

s.t. 100 𝑥1 + 50 𝑥2 ≥ 2000
100 𝑥1 + 50 𝑥2 ≤ 2500
3 𝑥1 + 4 𝑥2 ≤ 100
20 𝑥1 + 70 𝑥2 ≥ 700
𝑥1, 𝑥2 ∈ ℤ



LP Relaxation
Relax IP to LP by dropping integer constraints

min
𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ𝑁

Remember heuristics?



Piazza Poll 1:
Let 𝑦𝐼𝑃

∗ be the optimal objective of an integer program 𝑃.

Let 𝒙𝐼𝑃
∗ be an optimal point of an integer program 𝑃.

Let 𝑦𝐿𝑃
∗ be the optimal objective of the relaxed LP of 𝑃.

Let 𝒙𝐿𝑃
∗ be an optimal point of the relaxed LP of 𝑃.

Assume that 𝑃 is a minimization problem.

Which of the following are true?

A) 𝒙𝐼𝑃
∗ = 𝒙𝐿𝑃

∗

B) 𝑦𝐼𝑃
∗ ≤ 𝑦𝐿𝑃

∗

C) 𝑦𝐼𝑃
∗ ≥ 𝑦𝐿𝑃

∗

𝑦𝐼𝑃
∗ = min

𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ𝑁

𝑦𝐿𝑃
∗ = min

𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃



Question
Let 𝑦𝐼𝑃

∗ be the optimal objective of an integer program 𝑃.

Let 𝒙𝐼𝑃
∗ be an optimal point of an integer program 𝑃.

Let 𝒙0 be a feasible point of 𝑃.

Let 𝑦0 be the objective value of 𝑃 at 𝒙0
Assume that 𝑃 is a minimization problem.

Which of the following are true?

A) 𝒙𝐼𝑃
∗ = 𝒙0

B) 𝑦𝐼𝑃
∗ ≤ 𝑦0

C) 𝑦𝐼𝑃
∗ ≥ 𝑦0

𝑦𝐼𝑃
∗ = min

𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ𝑁

𝑦𝐿𝑃
∗ = min

𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃



Question
Let 𝑦𝐼𝑃

∗ be the optimal objective of an integer program 𝑃.

Let 𝒙𝐼𝑃
∗ be an optimal point of an integer program 𝑃.

Let 𝒙0 be a feasible point of 𝑃.

Let 𝑦0 be the objective value of 𝑃 at 𝒙0
Assume that 𝑃 is a minimization problem.

Which of the following are true?

A) 𝒙𝐼𝑃
∗ = 𝒙0

B) 𝑦𝐼𝑃
∗ ≤ 𝑦0

C) 𝑦𝐼𝑃
∗ ≥ 𝑦0

𝑦𝐼𝑃
∗ = min

𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃
𝒙 ∈ ℤ𝑁

𝑦𝐿𝑃
∗ = min

𝒙
. 𝒄𝑇𝒙

s.t. 𝐴𝒙 ⪯ 𝒃

𝑦𝐿𝑃
∗ ≤ 𝑦𝐼𝑃

∗ ≤ 𝑦0

Lower bound

Upper bound



Piazza Poll 2:
True/False: It is sufficient to consider the integer points that are the 
closest to an optimal solution of the LP relaxation?



Piazza Poll 2:
True/False: It is sufficient to consider the integer points that are the 
closest to an optimal solution of the LP relaxation?

1. An LP can have infinite number of optimal solutions
2. So as IP
3. Integer points that are closest to an optimal solution 

of LP relaxation of IP may not be feasible
4. Integer points that are closest to an optimal solution 

of LP relaxation of IP may not be optimal (depends 
on the objective function)



Solving an IP
Basic Branch and Bound algorithm (essentially a search algorithm)

1. Build the root node, which is the original IP. Set 𝒙𝐼𝑃
∗ =null, 𝑦𝐼𝑃

∗ = +∞

2. Solve the relaxed LP of the node

3. If relaxed LP is feasible, get solution 𝒙𝐿𝑃
∗ and optimal objective value 𝑦𝐿𝑃

∗

4. (Recursion) Pick an unexplored node and go to step 2. Stop if all nodes explored.

5. Return 𝒙𝐼𝑃
∗

Assuming a minimization IP

What if it is a maximization IP?

(Update) If integer(𝒙𝐿𝑃
∗ ), update 𝒙𝐼𝑃

∗ =best(𝒙𝐼𝑃
∗ , 𝒙𝐿𝑃
∗ ) and go to step 4

(Prune) If 𝑦𝐿𝑃
∗ ≥ 𝑦𝐼𝑃

∗ , go to step 4
(Branch) Choose a variable 𝑥𝑖 that has non-integer value in 𝒙𝐿𝑃

∗ , branch and 
construct two new nodes each representing a more constrained IP:

New node at left branch: Add constraint 𝑥𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥𝑖
New node at right branch: Add constraint 𝑥𝑖 ≥ 𝑐𝑒𝑖𝑙 𝑥𝑖



Solving an IP
Basic Branch and Bound algorithm (essentially a search algorithm)

1. Build the root node, which is the original IP. Set 𝒙𝐼𝑃
∗ =null, 𝑦𝐼𝑃

∗ = +∞

2. Solve the relaxed LP of the node

3. If relaxed LP is feasible, get solution 𝒙𝐿𝑃
∗ and optimal objective value 𝑦𝐿𝑃

∗

4. (Recursion) Pick an unexplored node and go to step 2. Stop if all nodes explored.

5. Return 𝒙𝐼𝑃
∗

Assuming a minimization IP

What if it is a maximization IP?

(Update) If integer(𝒙𝐿𝑃
∗ ), update 𝒙𝐼𝑃

∗ =best(𝒙𝐼𝑃
∗ , 𝒙𝐿𝑃
∗ ) and go to step 4

(Prune) If 𝑦𝐿𝑃
∗ ≥ 𝑦𝐼𝑃

∗ , go to step 4
(Branch) Choose a variable 𝑥𝑖 that has non-integer value in 𝒙𝐿𝑃

∗ , branch and 
construct two new nodes each representing a more constrained IP:

New node at left branch: Add constraint 𝑥𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥𝑖
New node at right branch: Add constraint 𝑥𝑖 ≥ 𝑐𝑒𝑖𝑙 𝑥𝑖

(Upper bound of IP)

(Lower bound for the IP of the node)

(Update upper bound)



Branch and Bound Example

10 15 20 25

5
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15



Branch and Bound Example

10 15 20 25

5

10

15

10 15 20 25

5

10

15

10 15 20 25

5

10

15

min
𝑥1, 𝑥2

1 𝑥1 + 0.5 𝑥2

s.t. 100 𝑥1 + 50 𝑥2 ≥ 2000
100 𝑥1 + 50 𝑥2 ≤ 2500
3 𝑥1 + 4 𝑥2 ≤ 100
20 𝑥1 + 70 𝑥2 ≥ 700
𝑥1, 𝑥2 ∈ ℤ Is it necessary to 

solve this branch?



Branch and Bound Example

10 15 20 25

5

10

15

10 15 20 25

5

10

15

10 15 20 25

5

10

15

Optimal solution for LP relaxation: 
(17.5,5)
Optimal value (lower bound for 
IP): 20 

min
𝑥1, 𝑥2

1 𝑥1 + 0.5 𝑥2

s.t. 100 𝑥1 + 50 𝑥2 ≥ 2000
100 𝑥1 + 50 𝑥2 ≤ 2500
3 𝑥1 + 4 𝑥2 ≤ 100
20 𝑥1 + 70 𝑥2 ≥ 700
𝑥1, 𝑥2 ∈ ℤ

Add constraint 𝑥1 ≤ 17

Optimal solution for relaxed 
LP: (17,6)
Optimal value (lower bound 
for this branch): 20
An integer solution found 
(update upper bound of IP)
Stop

Add 𝑥1 ≥ 18

Optimal solution for relaxed 
LP: (18,4.86)
Optimal value (lower bound 
for this branch): 20.43
Worse than upper bound
Stop

Optimal solution



Piazza Poll 3:
When does the branch-and-bound algorithm choose not to branch the 
current node? (Select all that apply)

A. When the LP returns an equal or worse objective value than the best 
feasible IP objective value you have seen before

B: When you hit an integer result from the LP

C: When LP is infeasible

D: When the LP returns a better objective value than the best feasible 
IP objective value you have seen before



Solving an IP
Basic Branch and Bound algorithm (essentially a search algorithm)

1. Build the root node, which is the original IP. Set 𝒙𝐼𝑃
∗ =null, 𝑦𝐼𝑃

∗ = +∞

2. Solve the relaxed LP of the node

3. If relaxed LP is feasible, get solution 𝒙𝐿𝑃
∗ and optimal objective value 𝑦𝐿𝑃

∗

4. (Recursion) Pick an unexplored node and go to step 2. Stop if all nodes explored.

5. Return 𝒙𝐼𝑃
∗

Assuming a minimization IP

(Update) If integer(𝒙𝐿𝑃
∗ ), update 𝒙𝐼𝑃

∗ =best(𝒙𝐼𝑃
∗ , 𝒙𝐿𝑃
∗ ) and go to step 4

(Prune) If 𝑦𝐿𝑃
∗ ≥ 𝑦𝐼𝑃

∗ , go to step 4
(Branch) Choose a variable 𝑥𝑖 that has non-integer value in 𝒙𝐿𝑃

∗ , branch and 
construct two new nodes each representing a more constrained IP:

New node at left branch: Add constraint 𝑥𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥𝑖
New node at right branch: Add constraint 𝑥𝑖 ≥ 𝑐𝑒𝑖𝑙 𝑥𝑖

Anything we can do to make the search more efficient?



Recall: Informed Search

function BEST-FIRST-SEARCH (problem, EVAL-FN) returns a solution sequence

inputs: problem, a problem

EVAL-FN, an evaluation function

Queuing-Fn ← a function that orders nodes by EVAL-FN

return GENERAL-SEARCH (problem, Queuing-Fn)

function GREEDY-SEARCH (problem) returns a solution or failure

return BEST-FIRST-SEARCH (problem, h)



Solving an IP
Basic Branch and Bound algorithm (essentially a search algorithm)

1. Build the root node, which is the original IP. Set 𝒙𝐼𝑃
∗ =null, 𝑦𝐼𝑃

∗ = +∞

2. Solve the relaxed LP of the node

3. If relaxed LP is feasible, get solution 𝒙𝐿𝑃
∗ and optimal objective value 𝑦𝐿𝑃

∗

4. (Recursion) Pick an unexplored node and go to step 2. Stop if all nodes explored.

5. Return 𝒙𝐼𝑃
∗

Assuming a minimization IP

(Update) If integer(𝒙𝐿𝑃
∗ ), update 𝒙𝐼𝑃

∗ =best(𝒙𝐼𝑃
∗ , 𝒙𝐿𝑃
∗ ) and go to step 4

(Prune) If 𝑦𝐿𝑃
∗ ≥ 𝑦𝐼𝑃

∗ , go to step 4
(Branch) Choose a variable 𝑥𝑖 that has non-integer value in 𝒙𝐿𝑃

∗ , branch and 
construct two new nodes each representing a more constrained IP:

New node at left branch: Add constraint 𝑥𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥𝑖
New node at right branch: Add constraint 𝑥𝑖 ≥ 𝑐𝑒𝑖𝑙 𝑥𝑖

What can be used as an evaluation function?

Optimal value of the LP relaxation!



Piazza Poll 4:
True or False: Node 𝐴 and 𝐵 are two nodes in the search tree. If 

(1) Node 𝐴 is not a descendent of 𝐵

(2) Node 𝐴’s LP relaxation has better optimal objective value than node 
𝐵, i.e., 𝑦𝐿𝑃

𝐴 < 𝑦𝐿𝑃
𝐵 for a minimization problem

(3) The optimal solution of LP relaxation at node 𝐴 is an integer 
solution, i.e., integer(𝒙𝐿𝑃

𝐴 )

then it is impossible that the optimal solution of the original IP is found 
in the subtree rooted at node 𝐵



Piazza Poll 4:
True or False: Node 𝐴 and 𝐵 are two nodes in the search tree. If 

(1) Node 𝐴 is not a descendent of 𝐵

(2) Node 𝐴’s LP relaxation has better optimal objective value than node 
𝐵, i.e., 𝑦𝐿𝑃

𝐴 < 𝑦𝐿𝑃
𝐵 for a minimization problem

(3) The optimal solution of LP relaxation at node 𝐴 is an integer 
solution, i.e., integer(𝒙𝐿𝑃

𝐴 )

then it is impossible that the optimal solution of the original IP is found 
in the subtree rooted at node 𝐵

Since 𝒙𝐿𝑃
A is integer, its objective value upper bounds the optimal value of the 

original LP, i.e., 𝑦𝐿𝑃
𝐴 ≥ 𝑦𝐼𝑃

∗ .
𝑦𝐿𝑃
𝐵 is the lower bound of the IP at node 𝐵. Any node 𝐶 in the subtree of node 𝐵

has no less constraints than node 𝐵, so 𝑦𝐿𝑃
B ≤ 𝑦𝐿𝑃

C . In addition, 𝑦𝐿𝑃
C ≤ 𝑦𝐼𝑃

𝐶 .

So 𝑦𝐼𝑃
C > 𝑦𝐼𝑃

∗ . The optimal solution of the original IP cannot be found at node 𝐶.



Solving an IP
Improved Branch and Bound algorithm (essentially a best-first-search algorithm)

1. Build the root node, which is the original IP. 

2. Solve the relaxed LP of the node. Return null if infeasible.

3. Given solution 𝒙𝐿𝑃
∗ and optimal objective value 𝑦𝐿𝑃

∗ of the relaxed LP

4. (Recursion) Pick an unexplored node whose LP relaxation is feasible and has the 
best optimal objective value and go to step 2. Stop if all nodes explored/infeasible.

5. Return null

Assuming a minimization IP

(Update) If integer(𝒙𝐿𝑃
∗ ), return 𝒙𝑳𝑷

∗

(Branch) Choose a variable 𝑥𝑖 that has non-integer value in 𝒙𝐿𝑃
∗ , branch and 

construct two new nodes each representing a more constrained IP:
New node at left branch: Add constraint 𝑥𝑖 ≤ 𝑓𝑙𝑜𝑜𝑟 𝑥𝑖
New node at right branch: Add constraint 𝑥𝑖 ≥ 𝑐𝑒𝑖𝑙 𝑥𝑖

Why still optimal? All the unexplored nodes have no better LP relaxation values!



Formulate a Problem as an IP
Kidney Exchange



Formulate a Problem as an IP
Kidney Exchange
 Given directed graph 𝐺 = (𝑉, 𝐸), where each node represent a patient-donor 

pair, and an edge 〈𝑢, 𝑣〉means donor of node 𝑢 can give one kidney to patient of 
node 𝑣

 Find a set of disjoint cycles so as to maximize the number of nodes covered

1

2

4

6

3

5

7
8



Piazza Poll 5
Given the graph below, what is the maximum number of patients that 
can get a kidney through kidney exchange assuming the length of each 
cycle should be less than or equal to 3?
 A: 3

 B: 6

 C: 7

 D: 8

1

2

4

6

3

5

7
8



Formulate a Problem as an IP
Kidney Exchange
 Given directed graph 𝐺 = (𝑉, 𝐸), where each node represent a patient-donor 

pair, and an edge 〈𝑢, 𝑣〉means donor of node 𝑢 can give one kidney to patient of 
node 𝑣

 Find a set of disjoint cycles so as to maximize the number of nodes covered

Hint: enumerate all the cycles

1

2

4

6

3

5

7
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Formulate a Problem as an IP
Kidney Exchange
 Given directed graph 𝐺 = (𝑉, 𝐸), where each node represent a patient-donor 

pair, and an edge 〈𝑢, 𝑣〉means donor of node 𝑢 can give one kidney to patient of 
node 𝑣

 Find a set of disjoint cycles so as to maximize the number of nodes covered

Hint: enumerate all the cycles

max
𝑥
 

𝑐

𝑥𝑐𝑙𝑐

s.t.  𝑐:𝑣∈𝑐 𝑥𝑐 ≤ 1, ∀𝑣 ∈ 𝑉
𝑥𝑐 ∈ 0,1 , ∀𝑐

1

2

4

6

3

5

7
8



Formulate a Problem as an IP
Cryptarithmetic

Variables:

IP:



Formulate a Problem as an IP
Cryptarithmetic

Variables: 𝑥𝑇, 𝑥𝑊, 𝑥𝑂, 𝑥𝐹, 𝑥𝑈, 𝑥𝑅, 𝑐1, 𝑐2, 𝑐3

IP: min
x,c
1

s.t. 𝑥𝑂 + 𝑥𝑂 = 𝑥𝑅 + 10𝑐1
𝑥𝑊 + 𝑥𝑊 + 𝑐1 = 𝑥𝑈 + 10𝑐2
𝑥𝑇 + 𝑥𝑇 + 𝑐2 = 𝑥𝑂 + 10𝑐3

0 + 𝑐3 = 𝑥𝐹
𝑥𝑇 , 𝑥𝐹 ∈ {1, . . , 9}

𝑥𝑊, 𝑥𝑂, 𝑥𝑈, 𝑥𝑅 ∈ {0, . . , 9}
𝑐1, 𝑐2, 𝑐3 ∈ {0,1}

Can also write as:  𝑥𝑇 , 𝑥𝐹 , 𝑥𝑊, 𝑥𝑂, 𝑥𝑈, 𝑥𝑅 ≤ 9,
𝑥𝑇 , 𝑥𝐹 ≥ 1, 𝑥𝑊, 𝑥𝑂, 𝑥𝑈, 𝑥𝑅 ≥ 0,
𝑐1, 𝑐2, 𝑐3 ≤ 1, 𝑐1, 𝑐2, 𝑐3 ≥ 0
𝑥, 𝑐 ∈ ℤ𝑁


