INSTRUCTIONS

- Due: Tuesday, 29 October 2019 at 10:00 PM EDT. Remember that you have NO slip days for Written Homework, but you may turn it in up to 24 hours late with 50% Penalty.
- Format: Submit the answer sheet pdf containing your answers. You should solve the questions on this handout (either through a pdf annotator, or by printing, then scanning). Make sure that your answers (typed or handwritten) are within the dedicated regions for each question/part. If you do not follow this format, we may deduct points.
- How to submit: Submit a pdf with your answers on Gradescope. Log in and click on our class 15-281 and click on the submission titled HW8 and upload your pdf containing your answers.
- Policy: See the course website for homework policies and Academic Integrity.

Name	
Andrew ID	
Hours to complete?	

For staff use only

Q1	Q2	Q3	Q4	Q5	Total
/13	/10	/22	/30	/25	/100

Q1. [13 pts] Probability: Product Rule and Chain Rule

Omega Pizzeria

As we step through the probability concepts of product rule and chain rule, you may find it helpful to check your understanding by referring back to our Omega Pizzeria example.

Let's define the following binary random variables and outcomes:

- X_1 : Spinach random variable
 - $-x_1$: no spinach outcome
 - $+x_1$: spinach outcome
- X_2 : Mushroom random variable
 - $-x_2$: no mushrooms outcome
 - $+x_2$: mushrooms outcome
- X_3 : Pepperoni random variable
 - $-x_3$: no pepperoni outcome
 - $+x_3$: pepperoni outcome

Product Rule

Sometimes you have conditional and marginal distributions, but you actually want to compute the full joint distribution. We know the basic product rule:

$$P(X_1, X_2) = P(X_1 \mid X_2)P(X_2) \tag{1}$$

and

$$P(X_1, X_2) = P(X_2 \mid X_1)P(X_1) \tag{2}$$

We can generalize the product rule a bit more when there are more than two variables. The following are two valid ways to break up the joint distribution of three variables using a more general application of product rule:

$$P(X_1, X_2, X_3) = P(X_1, X_2 \mid X_3)P(X_3)$$
(3)

and

$$P(X_1, X_2, X_3) = P(X_1 \mid X_2, X_3) P(X_2, X_3)$$
(4)

You can check the math with the pizzeria to make sure that all three of these sentences are equal:

- The probability of getting a slice with spinach, mushrooms, and pepperoni.
- (The probability of getting a slice with spinach and mushrooms, given that we asked for a slice with pepperoni) times (the probability of getting a slice with pepperoni)
- (The probability of getting a slice with spinach, given that we asked for a slice with mushrooms and pepperoni) times (the probability of getting a slice with mushrooms and pepperoni)

Chain Rule

We can further break down equation 4 by applying the product rule again, $P(X_2, X_3) = P(X_2 \mid X_3)P(X_3)$:

$$P(X_1, X_2, X_3) = P(X_1 \mid X_2, X_3) P(X_2, X_3)$$
(4)

$$= P(X_1 \mid X_2, X_3) P(X_2 \mid X_3) P(X_3) \tag{5}$$

This brings us to the general chain rule for N random variables, X_1, X_2, \ldots, X_N :

$$P(X_1, X_2, \dots, X_N) = \prod_{n=1}^{N} P(X_n \mid X_1, \dots, X_{n-1})$$
(6)

Mutton, Lettuce, and Tomato

"True love is the greatest thing in the world... except a nice MLT: mutton, lettuce, and to mato sandwich, where the mutton is nice and lean..." $-Miracle\ Max$

You are given the following probability tables for binary random variables M, L, T:

	D/TI)
T	P(T)
+t	0.4
-t	0.6

T	L	$P(L \mid T)$
+t	+l	0.8
+t	-l	0.2
-t	+l	0.25
-t	-l	0.75

L	T	M	$P(M \mid L, T)$
+l	+t	+m	0.95
+l	+t	-m	0.05
+l	-t	+m	0.75
+l	-t	-m	0.25
-l	+t	+m	0.40
-l	+t	-m	0.60
-l	-t	+m	0.10
-l	-t	-m	0.90

(a) [8 pts] Calculate P(L, T, M) from the tables given.

L	T	M	P(L,T,M)
+l	+t	+m	
+l	+t	-m	
+l	-t	+m	
+l	-t	-m	
-l	+t	+m	
-l	+t	-m	
-l	-t	+m	
-l	-t	-m	

- (b) [5 pts] Which of the following are valid decompositions of the joint probability distribution of M, L, and T, given no assumptions about the relationship between these random variables? Select all that apply.
 - \Box i) P(M)P(L)P(T)
 - ii) P(M)P(M,L)P(M,L,T)
 - \square iii) $P(M, L \mid T)P(T)$
 - \sqcup iv) $P(M \mid L, T)P(L)$
 - \square v) $P(M \mid L, T)P(T)$
 - vi) None of the above

Q2. [10 pts] Probability: Chain Rule, Joint Distributions, and Marginalization

Recall marginalization from HW7, which means summing out unwanted variables from a joint distribution. Consider three binary random variables A, B, and C with domains $\{+a, -a\}$, $\{+b, -b\}$, and $\{+c, -c\}$, respectively. Remember that P(A) refers to the table of probabilities of all the elements of A's domain.

P(A) =						
[2 pts] E notation.	xpress $P(A)$ in term	as of $P(C)$, $P(B)$	$\mid C)$ and $P(A \mid B)$, C). Your answ	ver should co	ntain summa
P(A) =						
[6 pts] E	spand the sums from	m part (b) to exp	oress the two elements	ents of $P(A)$ (F	P(+a) and $P($	(-a)) in term
the indiv NOT cor	spand the sums from idual probabilities (extra train summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$	P(+a) and $P($ or $P(C)$). Yo	(-a)) in term our answer sh
the indiv	idual probabilities (out ain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$	P(+a) and $P($ or $P(C)$). Yo	(-a)) in term our answer sh
the indiv	idual probabilities (out ain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P($ or $P(C)$). Yo	(-a)) in terror answer sh
the indiv NOT cor	idual probabilities (out ain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ ents	P(+a) and $P($ or $P(C)$). Yo	(-a)) in term answer sh
the indiv NOT cor	idual probabilities (out ain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the second seco	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P(0)$ or $P(C)$. Yo	(-a)) in term answer sh
the indiv	idual probabilities (out ain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P(0)$ or $P(C)$. Yo	(-a)) in terror answer sh
the indiv NOT cor	idual probabilities (atain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P($ or $P(C)$). Yo	(-a)) in term answer sh
the indiv NOT con $P(+a) =$	idual probabilities (atain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the second seco	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P($ or $P(C)$). Yo	(-a)) in term our answer sh
the indiv NOT con $P(+a) =$	idual probabilities (atain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the second seco	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P(0)$ and $P(C)$. Yo	(-a)) in term of answer shape
the indiv NOT con $P(+a) =$	idual probabilities (atain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the second seco	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P($ or $P(C)$). Yo	(-a)) in term our answer sh
the indiv NOT con P(+a) =	idual probabilities (atain summation not	e.g. $P(+b \mid +c)$, I	press the two elements $P(-c)$ instead of the second seco	ents of $P(A)$ ($P(A)$) ents of $P(B \mid C)$ of	P(+a) and $P(0)$ and $P(C)$. Yo	(-a)) in terrur answer sh

Q3. [22 pts] Dark Room Q-learning

A robot mysteriously finds itself in a dark room with 12 states as shown below. The robot can take four actions at each state (North, East, South, and West). We do not know where the interior walls are, except for the walls surrounding the room (represented by solid lines).

An action against a wall leaves the robot in the same state. Otherwise, the outcome of an action deterministically moves the robot in the direction corresponding to the action.

s_9	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} s_{11} \end{vmatrix}$	s_{12}
s_5	s_6	s_7	s_8
s_1	$\begin{bmatrix} \\ s_2 \end{bmatrix}$	s_3	$\begin{bmatrix} \\ s_4 \end{bmatrix}$

The robot learns the Q-values below. Note that only the maximum values for each state are shown, as the other values (represented with '-') do not affect the final policy.

	N	Е	S	W
s_1	59	59	-	-
s_2	-	66	-	-
s_3	-	73	-	-
s_4	81	-	-	-
s_5	66	-	-	-
s_6	-	59	-	59
s_7	-	-	66	-
s_8	90	-	-	-
s_9	-	73	-	-
s_{10}	-	81	-	-
s_{11}	-	90	-	-
s_{12}	100	100	-	-

(a)	4	pts
-----	---	-----

Using the learned Q-values, what are the first six actions the robot takes if it starts in state s_7 ? If there is more than one best action available, choose one randomly. For now, ignore any potential interior walls.

(b)	[9	pts

We are told the discount factor used during Q-learning was $\gamma=0.9.$

We are also told there exists a single state, s^* such that $R(s^*, a, s') > 0 \ \forall a, s'$, and for all other states s, $R(s, a, s') = 0 \ \forall a, s'$. Also assume that $R(s^*, a, s')$ are equivalent for all a, s'.

(i) What is s^* , and what is the reward?

<i>s</i> *:			

$R(s^*,a,s')$:	

(ii) Explain how you found your answers.

(c) [9 pts]

Now the robot wants to locate the interior walls within the room.

(i) Where are these walls? Draw them in by filling the corresponding dashed lines below.

s_9	s_{10}	$\begin{vmatrix} s_{11} \end{vmatrix}$	s_{12}
s_5	s_6	s_7	s_8
s_1	s_2	s_3	s_4

(ii) In 1-2 sentences, explain how you know where the walls are.

Q4. [30 pts] Representation for Buggy Bots

In this problem, we explore how domain representation affects performance and computational time when learning policies for MDPs.

In preparation for Carnival, we are training bots to push our buggy! The buggy bots move between three states: Valley, HillA, and HillB. From the valley, bots can choose to push up to Hill A or push up to Hill B. From the top of either hill, the available actions are to roll left or roll right.

The true transition matrix and reward functions are shown in the table below. At both HillA and HillB, rolling right gives positive reward and rolling left gives negative reward, but the positive reward in HillB is slightly higher. In Valley, both PushA and PushB give negative reward, but PushA gives a less negative reward. Note that from HillB, both RollL and RollR can result in the buggy ending up on HillA.

s	a	s'	T(s, a, s')	R(s,a)
HillA	RollL	Valley	1.0	-2.0
HillA	RollR	Valley	1.0	0.7
HillB	RollL	Valley	0.8	-2.3
HillB	RollL	HillA	0.2	-2.3
HillB	RollR	Valley	0.9	1.5
HillB	RollR	HillA	0.1	1.5
Valley	PushA	HillA	1.0	-0.2
Valley	PushB	HillB	1.0	-0.9

We consider two representations of the domain by two different robots. Robot One has a sensor that tells it whether it is in state HillA, HillB, or Valley (allowing it to fully represent the true state). Robot Two has a simpler representation, having only a hill/valley sensor, which allows it to distinguish between Valley and HillA or HillB, but it can't distinguish between HillA and HillB.

(a) [8 pts] Using a discount factor of $\gamma = 0.9$, Robot One learns the following Q-values:

s	a	Q(s,a)
HillA	RollL	0.302
HillA	RollR	3.00
HillB	RollL	0.082
HillB	RollR	3.84
Valley	PushA	2.51
Valley	PushB	2.56

(i) What is the optimal policy for Robot One?

 $HillA: \bigcirc RollL \bigcirc RollR$ $HillB: \bigcirc RollL \bigcirc RollR$ $Valley: \bigcirc PushA \bigcirc PushB$

	$V^{\pi_1}(HillA)$:	$V^{\pi_1}(HillB)$:	$V^{\pi_1}(Valley)$:	
probabilities	in the <i>Hill</i> state are tally equally. Under this	exploration strategy while learn the average of the rewards and the exploration strategy, with a disconnection	ransitions in $HillA$ and H	illB, as eac
		$ \begin{array}{c cccc} s & a & Q(s,a) \\ Hill & RollL & 1.79 \\ Hill & RollR & 5.01 \\ \hline Valley & PushA & 4.31 \\ Valley & PushB & 3.61 \\ \hline \end{array} $		
Hill: $Valley:$	he optimal policy for I $\bigcirc RollL \qquad \bigcirc Ro$ $\bigcirc PushA \qquad \bigcirc Pu$ his policy represented i	bllR $ushB$	would Robot One represen	t this police
Hill: $Valley:$	\bigcirc RollL \bigcirc Ro \bigcirc PushA \bigcirc Pu	bllR	would Robot One represen	t this policy
Hill: Valley: (ii) How is the Answer: (iii) What is were evaluat	○ RollL ○ Roll ○ PushA ○ PushA ○ PushA is policy represented in the value of this policy.	bllR $ushB$	what would the value of th	is policy be

(c)	[5 pts] Based on the results from Robot One and Robot Two, answer the following questions:
	(i) Which of the policies performs better on the original domain?
	○ Robot One ○ Robot Two
	(ii) Can the optimal policy for the original domain be expressed in both domains? Why or why not?
	Answer:
(d)	[3 pts] Consider a generic MDP in which all actions are deterministic, and all states can be reached from any given state. Suppose we have two representations of this MDP: R1, which has m states, and R2, which has n states. Assume that one iteration of value iteration using R1 takes t seconds. How long, in terms of t , should we expect one iteration of value iteration to take for R2?
	Robot Two time:
(e)	[3 pts] What are the trade-offs in choosing the representations for problems with large state spaces?
	Answer:

Q5. [25 pts] Approximate Q-learning

A robot is trying to get to its office hours, occurring on floors 3, 4, or 5 in GHC. It is running a bit late and there are a lot of students waiting for it. There are three ways it can travel between floors in Gates: the stairs, the elevator, and the helix.

The **state** of the robot is the floor that it is currently on (either 3, 4, or 5).

The actions that the robot can take are stairs, elevator, or helix.

In this problem, we are using a linear, feature based approximation of the Q-values:

$$Q_w(s, a) = \sum_{i=0}^{3} f_i(s, a) w_i$$

We define the feature functions as follows:

Features	Initial Weights
$f_0(s,a) = 1$ (this is a bias feature that is always 1)	$w_0 = 1$
$f_1 = f_{\text{speed}}(s, a) = (s - 4 + 1)t, \text{ where } t = \begin{cases} 50, a = \text{elevator} \\ 20, a = \text{stairs} \\ 10, a = \text{helix} \end{cases}$	$w_1 = 0.5$
$f_2 = f_{\text{accessibility}}(s, a) = \begin{cases} 2, a = \text{stairs} \\ 5, a = \text{helix} \\ 10, a = \text{elevator} \end{cases}$	$w_2 = 2$
$f_3 = f_{\text{emptiness}}(s, a) = \begin{cases} 60, a = \text{elevator}, s = 3\\ 80, a = \text{elevator}, s = 4\\ 60, a = \text{elevator}, s = 5\\ 0, \text{otherwise} \end{cases}$	$w_3 = 0.1$

Furthermore, the weights will be updated as follows:

$$w_i \leftarrow w_i + \alpha [r + \gamma \max_{a'} Q_w(s', a') - Q_w(s, a)] \frac{\delta}{\delta w_i} Q_w(s, a)$$

(a) [9 pts] Calculate the following initial Q values given the initial weights above.

Q_w (4, elevator):	$Q_w(4, { m stairs})$:	$Q_w(4, ext{ helix})$:

uniformly from all accelerator: al) [8 pts] Given a samp	alues for state 4	ϵ -greedy exploration	from state 4 (assume of ϵ .		
Answer: (a) [3 pts] Given the Q-vactions could be chosen uniformly from all accelerator: (b) [8 pts] Given a sample of the property of the p	alues for state 4	ε-greedy exploration our answers in terms	from state 4 (assume of ϵ .	e random movem	
) [3 pts] Given the Q-v actions could be chouniformly from all acelevator: elevator:	sen when using o	ε-greedy exploration our answers in terms	from state 4 (assume of ϵ .	e random movem	
actions could be cho uniformly from all ac elevator: [8 pts] Given a samp	sen when using o	ε-greedy exploration our answers in terms	from state 4 (assume of ϵ .	e random movem	
actions could be cho uniformly from all actions: [elevator: [8 pts] Given a samp	sen when using o	ε-greedy exploration our answers in terms	from state 4 (assume of ϵ .	e random movem	
actions could be cho uniformly from all ac elevator: [8 pts] Given a samp	sen when using o	ε-greedy exploration our answers in terms	from state 4 (assume of ϵ .	e random movem	
elevator: [8 pts] Given a samp		our answers in terms	of ϵ .		ents are ch
[8 pts] Given a samp		stairs:	h	al:	
				enx:	
				, and reward $=$	-2, update
of the weights using	learning rate $lpha$ =	= 0.25 and discount t	actor $\gamma = 0.0$.		
$w_0 =$					
$w_1 =$					
w ₁					
$w_2 =$					
$w_3 =$					
[0 +] XXI + :	1	0.1		1 101	. 9 1171
[2 pts] What is an addisadvantage?	ivantage of using	g approximate Q-ieai	ining instead of the s	standard Q-learn	iing: wnat
Advantage:					