Parallel And Sequential Data
Structures and Algorithms

Introduction to 15-210



Learning Objectives

» Understand what kind of course this is (and how it differs
from previous offerings)

« Understand how we will write algorithms (imperative and
functional)

« Understand how we reason about algorithms (abstraction,
cost, interfaces)



Course Logistics and Goals







Course Website and Platforms

« See the website for lecture notes, lecture slides, course
policies, and resources: https://www.cs.cmu.edu/~15210-s26/

« We will use Ed for questions and announcements:
https://edstem.org/us/courses/90704/discussion

« Homework will be submitted through Gradescope:
https://www.gradescope.com/courses/1209244

* For TA office hours, use the Office Hours Queue (OHQ):
https://210ohg.com/ohg/



https://www.cs.cmu.edu/~15210-s26/
https://www.cs.cmu.edu/~15210-s26/
https://www.cs.cmu.edu/~15210-s26/
https://edstem.org/us/courses/90704/discussion
https://www.gradescope.com/courses/1209244
https://210ohq.com/ohq/

Classes

- Lectures
« Monday, Wednesday, 11:00am — 12:20pm (Rashid)
« Some optional lectures on Friday 11:00am - 12:20pm (Rashid)
» Note, Friday lecture slot is also used for quizzes and midterms!

* Recitations
 Tuesday, various times, see your schedule on SIO



Assessment

Lab Homeworks (Programming and Written)
« 11 labs, worth 25% in total
» Released Tuesdays, due the following Monday
« "Bucket" system: You only need 90% score to get full points!
* No lab out on weeks that contain an exam

Quizzes
* Friday 6t" Feb (Week 4), 13t March (Week 8), 17t April (Week 13)
« Worth 15% in total (6% for your top two, 3% for your lowest)

Exams
« Midterms on Friday 20th Feb (Week 6) and 27t March (Week 10)
« Midterms are worth 15% each
* Final exam worth 25%

Recitation Participation
« Worth 5%



Course Changes

Key Idea: Focus on algorithm design first, rather than

implementations in a specific programming language

 New lectures, lecture notes, lecture slides
« Same topics as before, just different presentation

* No longer reguired to write algorithms in SML

« On exams and quizzes, you can write algorithms in any language,
including pseudocode, as long as it's clear

 For programming labs, you may choose Parallel SML or C++



C++1n 15-210

* All labs can be completed in either Parallel SML or C++

- Same ideas, different syntax: C++ can be used in a
functional, parallel style, mirroring the SML track.

Note: You do not need any advanced or systems-level C+ +.

No memory management
No pointers

No OOP concepts (inheritance/overriding/virtual functions)
No concurrency/atomics/threading
No move semantics/perfect forwarding/resource management




Imperative vs Functional




Functions

» In functional programming,
functions usually correspond
to mathematical functions: a
map from inputs to outputs

fun f(n : int) -> int:
if (n <= 1): return 1
else: return f(n - 1) + f(n - 2)

« Imperative functions can
mutate or depend on shared
(external) mutable state

X : int = ©

y : int = 0

fun f(n : int) -> int:
X « 23

if (n <= 1): return 1;
else: return f(n - 1) +y * 3;

Definition (Pure function): A pure function is a function that always

returns the same output given the same input and has no side effects.

11



Imperative Data Structures

éﬁgziuggiiiiié:iitree* T, entry e) { ¢ InsertIOn IntO an
;rclt(Im;==Nﬁ:;icg§;:;g(iiii)(/il)(éy(e), entry_key(T->data)); Imperatlve-Style (ml:lt_able)
gsécr:?? zst)jé;dfilZFi;: bst_insert(T->left, e); data StrUCture mOdlfles
clse Tooright = bst_insert(T->right, e); the existing data structure
} 5
e Example: bst _insert(T, 10)
(3) (8) » The right child of the 8-node

Is mutated to point to a
e @ new node containing 10

12



Functional Data Structures

fon oot (0 Emty - « Insertion into a functional
Node (Empty, (k, v), Empty)
lode (Empty, (el B ) data structure returns a
case Key.compare (k, k’) of new data Structure

EQUAL => Node (F, (k, v), R)
| Grearen o nade (L, qe, why ansert (o v ¢ The existing data structure
remains unmodified

Example: insert(10, )

« New nodes are created for
each node along the path

* Old nodes not on the
insertion path are reused




Persistence

 Functional data structures provide a useful property for free:

Making Data Structures Persistent

James R. Driscoll

Comp. Sci. Dept., Carnegie-Mellon Univ.
Pittsburgh, PA 15218

Definition (Persistent data structure): ol
A persistent data structure is a data e ok Uy S5

New York, New York 10012

structure that preserves the old versions of )
itself when it is updated.

Pittsburgh, PA 15218

Robert E. Tarjan

Comp. Science Dept., Princeton Univ.
Princeton, New Jersey 08544
d

an
AT&T Bell Laboratorics
Murray Hill, NJ 07974

T,
O

Persistence is like having ;1 insert(10) ‘Tz insert(2) ‘T3 insert(5)

version-control history of o

your data structure!

14



Abstraction: Interfaces
and Abstract Data Types




Interfaces and ADTs

Definition (Interface): An interface specifies a collection of
operations together with their intended behavior. It does not describe
how those operations are implemented.

Definition (ADT): An abstract data type (ADT) is an interface that
describes a data structure. It specifies the operations that can be
performed, while leaving the underlying representation unspecified.

- An implementation provides algorithms for the operations in the interface

A data structure is an implementation of an abstract data type, consisting
of both a representation together with algorithms for the operations.

16



Why Interfaces?

« Modularity: Can improve or replace a data structure with a
different one that implements the same interface and the code
that uses it still works without needing changes

* Reasoning: Correctness proofs and runtime analysis need only
reason about the interface and its guarantees, independent of
the low-level implementation details (assuming the data
structure is correct)

* Reuse: The same generic algorithm can be applied to multiple
different types if they support the correct interface

17



The Sequence ADT

Definition (Sequence): A sequence of length n over elements of type T is an
ordered collection of values that can be viewed as a mapping from the indices

01,...n—1}>T

Interface (Sequence): A sequence<T> (with value type T) supports

e nth(S : sequence<T>», 1 : int) -> T:
returns the " element of the sequence S

e length(S : sequence<T>) -> int:
return the length of the sequence S

e subseq(S : sequence<T>», i : int, k : int) -> sequence<T>:
returns a view of the subsequence of S starting at index i with length k

18



Array Sequences

« Assume that the sequences we construct are ArraySequence<T>, a
contiguous fixed-size array, which supports 0(1) time operations

 This is the type we will assume is returned by the tabulate primitive,
which constructs a sequence from a function

tabulate : (f : (int -> T), n : int) -> ArraySequence<T>
« tabulate(f, n) returns a sequence of length n where S[i] = f (i), i.e,,
[£C0), f(1), ... f(n—1)].
« We may also use Python-like syntax in our pseudocode, e.g., we may write
parallel [f(i) for i in 0..n-1]

19



Other Example ADTs

Interface (Dictionary): A dictionary<K,V> (key type K, value type V) has:

e insert(D : dictionary<K,V>, k : K, v : V) -> void:
add the given key, value pair k: v

e find(D : dictionary<K,V>, k : K) -> option<(K,V)>:
return the item with the given key k (NONE if it doesn’t exist)

e delete(D : dictionary<K,V>, k : K) -> void:
delete the item with the given key k

« The most common implementations of dictionaries are:
« Hash tables (common in imperative code)
« Binary search trees (common in functional and imperative code)

20



Abstraction: Models of
Computation and Cost Models




Analyzing Costs of Algorithms

- We make claims like "Insertion sort runs in 0(n?) time" and
"Merge Sort runs in O(n logn) time"

Question: How are we measuring "time"?

« In 15-122, you settled on "number of execution steps”

» "Execution steps” include integer arithmetic, conditionals,
function calls, reading/writing memory, etc.

» One important caveat: we should not allow arbitrary-precision
arithmetic in a single step

22



Word RAM Model

Definition (Word RAM model):
« Memory values are w-bits long,

 Operations on w-bit values, e.g., arithmetic, comparison, branching,
reading/writing any memory location, cost 0(1),

*w is at least log n for problem inputs of size n.

« Same in spirit as the "number of execution steps” from 15-122

 Only difference is the restriction on the precision to some fixed
number of bits w

23



Why Limit Precision?
int product = 1; product = 1

for (int i = 1; i <= n; i++) for 1 in range(1,n+1):

e
product *= 1i; product *

Question: What goes wrong with this C code and Python code?

 In C, the product overflows a 64-bit integer for just n > 21
 In Python, it takes more than constant space

« In summary: don't write algorithms that rely on higher
precision arithmetic than the precision of the input

24



Parallel Cost Models

» The Word RAM model is purely sequential. To analyze parallel
algorithms, we will need to extend the model

Definition (Fork-Join RAM): Extends the word RAM with a fork instruction.
» fork creates a fixed number of child computations that may execute in parallel.

« The parent suspends at the fork point and resumes only after all its children
have completed; the resumption is called the join point

« Child computations may perform forks, allowing parallelism to be nested.

Question: How much abstraction is this compared to real computer?

25



Nested Parallelism as an Abstraction

 Think of nested parallelism as having
infinitely many processors!

A process can always fork into more,
and this can continue recursively (e.q.,
divide-and-conquer style). No limit.

* Nested parallelism allows algorithms to express parallel structure
without specifying Aow computations are assigned to processors

26



What Do We Measure?

* For sequential algorithms, we just measured one cost (“time"”)

» In 15-150, you learned that to describe the cost of a parallel
algorithm, we need two numbers

Intuition: \Work is the cost of the algorithm on one processor (i.e. no parallelism)

Definition (Span): The span of a parallel algorithm is the cost of the
longest chain of dependent computations

Intuition: Span is the cost of the algorithm with infinitely many processors!

27



Example: Parallel Sum (Reduce+)

fun sum(S : sequence<int>) -> int:
match length(S) with:

case 0: return © // Empty sequence

case 1: return S[0] // Singleton sequence

case _
L, R = split mid(S) // Helper function
Lsum, Rsum = parallel (sum(L), sum(R))
return Lsum + Rsum

Analysis via recurrence relation: Less formal analysis: The
recursion has depth 0(logn)

Weum (1) = 2Wsum (n/2) + 0(1) which solves to 0(n) and does constant work per
Seum (M) = Squm(n/2) + 0(1) which solves to 0(log n) node, so the span is 0(log n).

28



Why "infinitely many processors”?

« Unsatisfying answer: Span is a natural measurement for nested parallel
algorithms since they are described as if there are infinite processors

- Better answer: It turns out that by measuring the work and span, we
can derive the cost of the algorithm for any number of processors!

Theorem (Brent's Theorem): An algorithm with work W and span S
can be scheduled on a P-processor machine in O(max(W/P, S)) time

Brent's Theorem essentially proves that nested parallelism is a good abstraction’/

29



Summary

 You can do your homework in either Parallel SML or C+ +!

 Functional data structures differ from imperative ones by
avoiding mutation and as a result are naturally persistent
which can have useful algorithmic applications

« Interfaces and ADTs are useful for specifying operations without
committing to a concrete implementation

» Our chosen model for parallel algorithms is nested fork-join
parallelism, analyzed by their work and span

30



	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Course Logistics and Goals
	Slide 4: Staff
	Slide 5: Course Website and Platforms
	Slide 6: Classes
	Slide 7: Assessment
	Slide 8: Course Changes
	Slide 9: C++ in 15-210
	Slide 10: Imperative vs Functional
	Slide 11: Functions
	Slide 12: Imperative Data Structures
	Slide 13: Functional Data Structures
	Slide 14: Persistence
	Slide 15: Abstraction: Interfaces and Abstract Data Types
	Slide 16: Interfaces and ADTs
	Slide 17: Why Interfaces?
	Slide 18: The Sequence ADT
	Slide 19: Array Sequences
	Slide 20: Other Example ADTs
	Slide 21: Abstraction: Models of Computation and Cost Models
	Slide 22: Analyzing Costs of Algorithms
	Slide 23: Word RAM Model
	Slide 24: Why Limit Precision?
	Slide 25: Parallel Cost Models
	Slide 26: Nested Parallelism as an Abstraction
	Slide 27: What Do We Measure?
	Slide 28: Example: Parallel Sum (Reduce+)
	Slide 29: Why "infinitely many processors"?
	Slide 30: Summary

