
Parallel And Sequential Data
Structures and Algorithms

Introduction to 15-210

1

Learning Objectives

• Understand what kind of course this is (and how it differs
from previous offerings)

• Understand how we will write algorithms (imperative and
functional)

• Understand how we reason about algorithms (abstraction,
cost, interfaces)

2

Course Logistics and Goals

3

Staff

4

Ellie Anna Julia Tyler Scarlett Ronnie Karthik

Ananya Jocelyn Jessica Lukas Ivy Vishant

Cole Amruta EdwardDaniel Danny

Jason

Jonathan

Juliet

Saaketh

Tony

Course Website and Platforms

• See the website for lecture notes, lecture slides, course
policies, and resources: https://www.cs.cmu.edu/~15210-s26/

• We will use Ed for questions and announcements:
https://edstem.org/us/courses/90704/discussion

• Homework will be submitted through Gradescope:
https://www.gradescope.com/courses/1209244

• For TA office hours, use the Office Hours Queue (OHQ):
https://210ohq.com/ohq/

5

https://www.cs.cmu.edu/~15210-s26/
https://www.cs.cmu.edu/~15210-s26/
https://www.cs.cmu.edu/~15210-s26/
https://edstem.org/us/courses/90704/discussion
https://www.gradescope.com/courses/1209244
https://210ohq.com/ohq/

Classes

• Lectures
• Monday, Wednesday, 11:00am – 12:20pm (Rashid)

• Some optional lectures on Friday 11:00am - 12:20pm (Rashid)

• Note, Friday lecture slot is also used for quizzes and midterms!

• Recitations
• Tuesday, various times, see your schedule on SIO

6

Assessment

• Lab Homeworks (Programming and Written)
• 11 labs, worth 25% in total

• Released Tuesdays, due the following Monday

• "Bucket" system: You only need 90% score to get full points!

• No lab out on weeks that contain an exam

• Quizzes
• Friday 6th Feb (Week 4), 13th March (Week 8), 17th April (Week 13)

• Worth 15% in total (6% for your top two, 3% for your lowest)

• Exams
• Midterms on Friday 20th Feb (Week 6) and 27th March (Week 10)

• Midterms are worth 15% each

• Final exam worth 25%

• Recitation Participation
• Worth 5%

7

Course Changes

• New lectures, lecture notes, lecture slides

• Same topics as before, just different presentation

• No longer required to write algorithms in SML
• On exams and quizzes, you can write algorithms in any language,

including pseudocode, as long as it's clear

• For programming labs, you may choose Parallel SML or C++

8

Key Idea: Focus on algorithm design first, rather than
implementations in a specific programming language

C++ in 15-210

• All labs can be completed in either Parallel SML or C++

• Same ideas, different syntax: C++ can be used in a
functional, parallel style, mirroring the SML track.

9

Note: You do not need any advanced or systems-level C++.

• No memory management
• No pointers
• No OOP concepts (inheritance/overriding/virtual functions)
• No concurrency/atomics/threading
• No move semantics/perfect forwarding/resource management

Imperative vs Functional

10

Functions

• In functional programming,
functions usually correspond
to mathematical functions: a
map from inputs to outputs

• Imperative functions can
mutate or depend on shared
(external) mutable state

11

fun f(n : int) -> int:
 if (n <= 1): return 1
 else: return f(n - 1) + f(n - 2)

x : int = 0
y : int = 0

fun f(n : int) -> int:
 x ← 23
 if (n <= 1): return 1;
 else: return f(n - 1) + y * 3;

Definition (Pure function): A pure function is a function that always
returns the same output given the same input and has no side effects.

Example:

Imperative Data Structures

• Insertion into an
imperative-style (mutable)
data structure modifies
the existing data structure

12

// source: 15-122
tree* bst_insert(tree* T, entry e) {
 if (T == NULL) return leaf(e);
 int cmp = key_compare(entry_key(e), entry_key(T->data));
 if (cmp == 0) T->data = e;
 else if (cmp < 0) T->left = bst_insert(T->left, e);
 else T->right = bst_insert(T->right, e);
 return T;
}

6

7

3 8

NULL

bst_insert(T, 10)

10

• The right child of the 8-node
is mutated to point to a
new node containing 10

Example:

Functional Data Structures

• Insertion into a functional
data structure returns a
new data structure

• The existing data structure
remains unmodified

13

(* source: 15-150 *)
fun insert (k, v) Empty =
 Node (Empty, (k, v), Empty)
 | insert (k, v) (Node (L, (k’, v’), R)) =
 case Key.compare (k, k’) of
 EQUAL => Node (L, (k, v), R)
 | LESS => Node (insert (k, v) L, (k’, v’), R)
 | GREATER => Node (L, (k’, v’), insert (k, v) R)

6

7

3 8

10

6

8

insert(10, _)

3

7

3

7

• New nodes are created for
each node along the path

• Old nodes not on the
insertion path are reused

Persistence

• Functional data structures provide a useful property for free:

14

Definition (Persistent data structure):
A persistent data structure is a data
structure that preserves the old versions of
itself when it is updated.

insert(10) insert(2) insert(5)𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒

𝑻𝟓

Persistence is like having
version-control history of
your data structure!

Abstraction: Interfaces
and Abstract Data Types

15

Interfaces and ADTs

• An implementation provides algorithms for the operations in the interface

• A data structure is an implementation of an abstract data type, consisting
of both a representation together with algorithms for the operations.

16

Definition (Interface): An interface specifies a collection of
operations together with their intended behavior. It does not describe
how those operations are implemented.

Definition (ADT): An abstract data type (ADT) is an interface that
describes a data structure. It specifies the operations that can be
performed, while leaving the underlying representation unspecified.

Why Interfaces?

• Modularity: Can improve or replace a data structure with a
different one that implements the same interface and the code
that uses it still works without needing changes

• Reasoning: Correctness proofs and runtime analysis need only
reason about the interface and its guarantees, independent of
the low-level implementation details (assuming the data
structure is correct)

• Reuse: The same generic algorithm can be applied to multiple
different types if they support the correct interface

17

The Sequence ADT

18

Interface (Sequence): A sequence<T> (with value type T) supports

• nth(S : sequence<T>, i : int) -> T:

 returns the 𝑖th element of the sequence 𝑆

• length(S : sequence<T>) -> int:
 return the length of the sequence 𝑆

• subseq(S : sequence<T>, i : int, k : int) -> sequence<T>:
 returns a view of the subsequence of S starting at index 𝑖 with length 𝑘

Definition (Sequence): A sequence of length 𝑛 over elements of type 𝑇 is an
ordered collection of values that can be viewed as a mapping from the indices

0,1, … , 𝑛 − 1 → 𝑇

Array Sequences

• Assume that the sequences we construct are ArraySequence<T>, a
contiguous fixed-size array, which supports 𝑂 1 time operations

• This is the type we will assume is returned by the tabulate primitive,
which constructs a sequence from a function

tabulate : (f : (int -> T), n : int) -> ArraySequence<T>

19

• tabulate(f, n) returns a sequence of length 𝑛 where 𝑆 𝑖 = 𝑓(𝑖), i.e.,

𝑓 0 , 𝑓 1 , … , 𝑓 𝑛 − 1 .

• We may also use Python-like syntax in our pseudocode, e.g., we may write

parallel [f(i) for i in 0…n-1]

Other Example ADTs

• The most common implementations of dictionaries are:
• Hash tables (common in imperative code)

• Binary search trees (common in functional and imperative code)

20

Interface (Dictionary): A dictionary<K,V> (key type K, value type V) has:

• insert(D : dictionary<K,V>, k : K, v : V) -> void:
 add the given key, value pair 𝑘: 𝑣

• find(D : dictionary<K,V>, k : K) -> option<(K,V)>:

 return the item with the given key 𝑘 (NONE if it doesn’t exist)

• delete(D : dictionary<K,V>, k : K) -> void:

 delete the item with the given key 𝑘

Abstraction: Models of
Computation and Cost Models

21

Analyzing Costs of Algorithms

• We make claims like "Insertion sort runs in 𝑂(𝑛2) time" and
"Merge Sort runs in 𝑂(𝑛 log 𝑛) time"

22

Question: How are we measuring "time"?

• In 15-122, you settled on "number of execution steps"

• "Execution steps" include integer arithmetic, conditionals,
function calls, reading/writing memory, etc.

• One important caveat: we should not allow arbitrary-precision
arithmetic in a single step

Word RAM Model

• Same in spirit as the "number of execution steps" from 15-122

• Only difference is the restriction on the precision to some fixed
number of bits 𝒘

23

Definition (Word RAM model):

•Memory values are 𝒘-bits long,

• Operations on 𝑤-bit values, e.g., arithmetic, comparison, branching,
reading/writing any memory location, cost 𝑂 1 ,

• 𝑤 is at least log 𝑛 for problem inputs of size 𝑛.

Why Limit Precision?

• In C, the product overflows a 64-bit integer for just 𝑛 ≥ 21

• In Python, it takes more than constant space

• In summary: don't write algorithms that rely on higher
precision arithmetic than the precision of the input

24

int product = 1;

for (int i = 1; i <= n; i++)

 product *= i;

product = 1
for i in range(1,n+1):
 product *= i

Question: What goes wrong with this C code and Python code?

Parallel Cost Models

• The Word RAM model is purely sequential. To analyze parallel
algorithms, we will need to extend the model

25

Definition (Fork-Join RAM): Extends the word RAM with a fork instruction.

• fork creates a fixed number of child computations that may execute in parallel.

• The parent suspends at the fork point and resumes only after all its children
have completed; the resumption is called the join point

• Child computations may perform forks, allowing parallelism to be nested.

Question: How much abstraction is this compared to real computer?

Nested Parallelism as an Abstraction

• Think of nested parallelism as having
infinitely many processors!

• A process can always fork into more,
and this can continue recursively (e.g.,
divide-and-conquer style). No limit.

26

Remark: Deciding which instructions run on which CPU core is called
scheduling. Your OS also has a scheduler for running processes.

• Nested parallelism allows algorithms to express parallel structure
without specifying how computations are assigned to processors

What Do We Measure?

• For sequential algorithms, we just measured one cost ("time")

• In 15-150, you learned that to describe the cost of a parallel
algorithm, we need two numbers

27

Definition (Work): The work of a parallel algorithm is sum of the costs
of all instructions it executes, across all parallel branches.

Definition (Span): The span of a parallel algorithm is the cost of the
longest chain of dependent computations

Intuition: Work is the cost of the algorithm on one processor (i.e. no parallelism)

Intuition: Span is the cost of the algorithm with infinitely many processors!

Example: Parallel Sum (Reduce+)

28

fun sum(S : sequence<int>) -> int:
 match length(S) with:
 case 0: return 0 // Empty sequence
 case 1: return S[0] // Singleton sequence
 case _:
 L, R = split_mid(S) // Helper function
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

Analysis via recurrence relation:

𝑊sum 𝑛 = 2𝑊sum 𝑛/2 + 𝑂(1) which solves to 𝑂(𝑛)
𝑆sum 𝑛 = 𝑆sum 𝑛/2 + 𝑂 1 which solves to 𝑂(log 𝑛)

Less formal analysis: The
recursion has depth 𝑂(log 𝑛)
and does constant work per
node, so the span is 𝑂 log 𝑛 .

Why "infinitely many processors"?

29

Question: most CPUs have neither one nor infinitely many processors…
so why are these quantities useful?

Theorem (Brent's Theorem): An algorithm with work 𝑊 and span 𝑆

can be scheduled on a 𝑃-processor machine in 𝑂 max 𝑊/𝑃, 𝑆 time

• Better answer: It turns out that by measuring the work and span, we
can derive the cost of the algorithm for any number of processors!

• Unsatisfying answer: Span is a natural measurement for nested parallel
algorithms since they are described as if there are infinite processors

Brent's Theorem essentially proves that nested parallelism is a good abstraction!

Summary

• You can do your homework in either Parallel SML or C++!

• Functional data structures differ from imperative ones by
avoiding mutation and as a result are naturally persistent
which can have useful algorithmic applications

• Interfaces and ADTs are useful for specifying operations without
committing to a concrete implementation

• Our chosen model for parallel algorithms is nested fork-join
parallelism, analyzed by their work and span

30

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Course Logistics and Goals
	Slide 4: Staff
	Slide 5: Course Website and Platforms
	Slide 6: Classes
	Slide 7: Assessment
	Slide 8: Course Changes
	Slide 9: C++ in 15-210
	Slide 10: Imperative vs Functional
	Slide 11: Functions
	Slide 12: Imperative Data Structures
	Slide 13: Functional Data Structures
	Slide 14: Persistence
	Slide 15: Abstraction: Interfaces and Abstract Data Types
	Slide 16: Interfaces and ADTs
	Slide 17: Why Interfaces?
	Slide 18: The Sequence ADT
	Slide 19: Array Sequences
	Slide 20: Other Example ADTs
	Slide 21: Abstraction: Models of Computation and Cost Models
	Slide 22: Analyzing Costs of Algorithms
	Slide 23: Word RAM Model
	Slide 24: Why Limit Precision?
	Slide 25: Parallel Cost Models
	Slide 26: Nested Parallelism as an Abstraction
	Slide 27: What Do We Measure?
	Slide 28: Example: Parallel Sum (Reduce+)
	Slide 29: Why "infinitely many processors"?
	Slide 30: Summary

