
Parallel And Sequential Data
Structures and Algorithms

Divide-and-Conquer and Reduce

1

Learning Objectives

• Understand folds and reductions as generalizations of sums

• See how to implement reduce using divide-and-conquer

• See how to implement divide-and-conquer using reduce

• Learn the divide-and-conquer algorithm for merge

• Understand the uses of merge as an associative function

2

Reduce

3

Recall: Parallel Sum

• In Lecture One, we saw
this parallel divide-and-
conquer algorithm for sum

• It runs in 𝑂 𝑛 work and
𝑂(log 𝑛) span

4

fun sum(S : sequence<int>) -> int:
 match length(S) with:
 case 0: return 0 // Empty sequence
 case 1: return S[0] // Singleton sequence
 case _:
 L, R = split_mid(S) // Helper function
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

Question: How can we generalize this?

Generalizing Sums: Folds

• There are several ways we can generalize the notion of a sum

𝑠0 + 𝑠1 + 𝑠2 + ⋯ + 𝑠𝑛−1 + 𝑠𝑛

5

Definition (Fold): A (left) fold over some sequence 𝑠 with a binary
operation 𝑓 and an initial value 𝐼 computes

𝑓 𝑓 𝑓 𝑓 𝑓 𝐼, 𝑠0 , 𝑠1 , 𝑠2 , … , 𝑠𝑛−1 , 𝑠𝑛

• Left/right folds are defined left-to-right or right-to-left, so they
are inherently sequential! We can not hope to parallelize this.

Generalizing Sums: Reductions

• Folds are not parallelizable because they typically prescribe a
particular evaluation order (e.g., left-to-right or right-to-left)

• A reduction is a fold that can be arbitrarily parenthesized

𝑠0 + 𝑠1 + 𝑠2 + ⋯ + 𝑠𝑛−1 + 𝑠𝑛

6

Definition (Reduce): A reduce over some sequence 𝑠 with a binary
associative operation 𝑓 and an identity value 𝐼 computes a fold of 𝑓
over 𝑠 where the order of applications of 𝑓 may be arbitrary

𝑓 𝑓 𝑠0, 𝑓 𝑠1, 𝑠2 , … , 𝑓 𝑠𝑛−1, 𝑠𝑛

Reduce

• By relaxing the order, reduce becomes highly parallelizable

• The implementation matches our parallel sum, which took
advantage of the associativity of + for integers

7

fun sum(S : sequence<int>) -> int:
 match length(S) with:
 case 0: return 0 // Empty sequence
 case 1: return S[0] // Singleton sequence
 case _:
 L, R = split_mid(S)
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

fun sum(S : sequence<int>) -> int:
 match length(S) with:
 case 0: return 0
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return 0
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return 0
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lsum, Rsum = parallel (sum(L), sum(R))
 return Lsum + Rsum

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lres, Rres = parallel (reduce(L), reduce(R))
 return Lsum + Rsum

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 L, R = split_mid(S)
 Lres, Rres = parallel (reduce(L), reduce(R))
 return f(Lres, Rres)

Understanding Reduce

reduce : (f : (T, T) -> T, I : T, S : sequence<T>) -> T

8

• f must be an associative function. Formally
• f(f(x,y),z) = f(x,f(y,z)) for all values x,y,z of type T

• I must be an identity, Formally
• f(I,x) = x and f(x, I) = x for all values x of type T

Theorem (Cost of Reduce): Assuming that f can be evaluated in
constant time, reduce costs 𝑂 𝑆 work and 𝑂 log 𝑆 span.

• Work recurrence is leaf dominated with 𝑂 𝑆 leaves

Look Familiar?

9

Recall from MCSSLab

10

fun smcss(S : sequence<int>) -> (int,int,int,int):
 match length(S) with:
 case 0: return (0,0,0,0)
 case 1:
 m = max(0, A[0])
 return (m, m, m, A[0])
 case _:
 L, R = split_mid(S)
 (m1,p1,s1,t1), (m2,p2,s2,t2) = parallel (smcss(L), smcss(R))
 return (max(s1 + p2, m1, m2),
 max(p1, t1 + p2),
 max(s2, t2 + s1),
 t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
 match length(S) with:
 case 0: return (0,0,0,0)
 case 1:
 m = max(0, A[0])
 return (m, m, m, A[0])
 case _:
 L, R = split_mid(S)
 (m1,p1,s1,t1), (m2,p2,s2,t2) = parallel (smcss(L), smcss(R))
 return (max(s1 + p2, m1, m2),
 max(p1, t1 + p2),
 max(s2, t2 + s1),
 t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
 match length(S) with:
 case 0: return (0,0,0,0)
 case 1:
 m = max(0, A[0])
 return (m, m, m, A[0])
 case _:
 L, R = split_mid(S)
 (m1,p1,s1,t1), (m2,p2,s2,t2) = parallel (smcss(L), smcss(R))
 return (max(s1 + p2, m1, m2),
 max(p1, t1 + p2),
 max(s2, t2 + s1),
 t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
 match length(S) with:
 case 0: return (0,0,0,0)
 case 1:
 m = max(0, A[0])
 return (m, m, m, A[0])
 case _:
 L, R = split_mid(S)
 (m1,p1,s1,t1), (m2,p2,s2,t2) = parallel (smcss(L), smcss(R))
 return (max(s1 + p2, m1, m2),
 max(p1, t1 + p2),
 max(s2, t2 + s1),
 t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
 match length(S) with:
 case 0: return (0,0,0,0)
 case 1:
 m = max(0, A[0])
 return (m, m, m, A[0])
 case _:
 L, R = split_mid(S)
 (m1,p1,s1,t1), (m2,p2,s2,t2) = parallel (smcss(L), smcss(R))
 return (max(s1 + p2, m1, m2),
 max(p1, t1 + p2),
 max(s2, t2 + s1),
 t1+t2)

Hang on, That's Just Reduce!

11

type sums = (int,int,int,int)

fun combine_smcss((m1,p1,s1,t1) : sums, (m2,p2,s2,t2) : sums) -> sums:
 return (max(s1 + p2, m1, m2),
 max(p1, t1 + p2),
 max(s2, t2 + s1),

 t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
 fun base(x : int): return (max(0,x),max(0,x),max(0,x),x)
 return reduce(combine_smcss, (0,0,0,0), map(base, S))

fun excessParens(p : sequence<Paren>) -> (int,int):
 match length(p) with:
 case 0: return (0,0)
 case 1:
 if p[0] == L: return (0,1)
 else: return (1,0)
 case _:
 L, R = split_mid(S)
 (i,j), (k,l) = parallel (excessParens(L), excessParens(R))
 if j <= k: return (i + k - j, l)
 else: return (i, l + j - k)

fun excessParens(p : sequence<Paren>) -> (int,int):
 match length(p) with:
 case 0: return (0,0)
 case 1:
 if p[0] == L: return (0,1)
 else: return (1,0)
 case _:
 L, R = split_mid(S)
 (i,j), (k,l) = parallel (excessParens(L), excessParens(R))
 if j <= k: return (i + k - j, l)
 else: return (i, l + j - k)

fun excessParens(p : sequence<Paren>) -> (int,int):
 match length(p) with:
 case 0: return (0,0)
 case 1:
 if p[0] == L: return (0,1)
 else: return (1,0)
 case _:
 L, R = split_mid(S)
 (i,j), (k,l) = parallel (excessParens(L), excessParens(R))
 if j <= k: return (i + k - j, l)
 else: return (i, l + j - k)

fun excessParens(p : sequence<Paren>) -> (int,int):
 match length(p) with:
 case 0: return (0,0)
 case 1:
 if p[0] == L: return (0,1)
 else: return (1,0)
 case _:
 L, R = split_mid(S)
 (i,j), (k,l) = parallel (excessParens(L), excessParens(R))
 if j <= k: return (i + k - j, l)
 else: return (i, l + j - k)

fun excessParens(p : sequence<Paren>) -> (int,int):
 match length(p) with:
 case 0: return (0,0)
 case 1:
 if p[0] == L: return (0,1)
 else: return (1,0)
 case _:
 L, R = split_mid(S)
 (i,j), (k,l) = parallel (excessParens(L), excessParens(R))
 if j <= k: return (i + k - j, l)
 else: return (i, l + j - k)

Recall from Paren Match (Reci)

12

It's Reduce Again!

13

fun combine_paren((i : int, j : int), (k : int, l : int)) -> (int, int):
 return (i + k – j, l) if j <= k else (i, l + j – k)

fun excessParens(p : sequence<Paren>) -> (int,int):
 fun base(x : Paren): return (0,1) if x == L else (1,0)
 return reduce(combine_paren, (0,0), map(base, p))

Reduce as "Generic D&C"

14

fun algo(S : sequence<T>):
 match length(S) with:
 case 0: return empty
 case 1: return base(S[0])
 case _:
 L, R = split_mid(S)
 Lres, Rres = parallel (algo(L), algo(R))
 return combine(Lres, Rres)

fun algo(s : sequence<T>):
 return reduce(combine, empty, map(base, s))

Reduce as "Generic D&C"

• Works when the "divide" step is trivial: just split input in half
and recurse--don't do anything with the halves before recursion

• When the "conquer" step can be expressed as an associative
function combine which combines the left and right result

15

fun algo(S : sequence<T>):
 match length(S) with:
 case 0: return empty
 case 1: return base(S[0])
 case _:
 L, R = split_mid(S)
 Lres, Rres = parallel (algo(L), algo(R))
 return combine(Lres, Rres)

Merge

16

Merge

• Recall the merge operation from 15-122 and 15-150:

17

Definition (Merge): Given two sorted sequences, return a sorted
sequence containing the elements of both

• A simple sequential implementation runs in 𝑂 𝑛 time

• How can we make this parallel?

Answer: Let's try divide-and-conquer!

fun merge(A : sequence<T>, B : sequence<T>) -> sequence<T>

Divide-and-conquer merge

• Input is two sequences, not one! May not be the same length!

• Which one(s) do we divide? What if we divide both in half?

18

Question: Right off the bat, what makes merge more
complicated than most divide-and-conquer algorithms?

1, 2, 4, 6, 8, 9, 12, 16

3, 5, 7, 10, 11, 13, 14, 15

1, 2, 4, 6 8, 9, 12, 16

3, 5, 7, 10 11, 13, 14, 15
1,2,3,4,5,6,7,10 8,9,11,12,13,14,15,16

Not sorted!

Finding the Split Point

• Let's still split the first sequence (A) in half

19

1, 2, 4, 6, 8, 9, 12, 16

3, 5, 7, 10, 11, 13, 14, 15

1, 2, 4, 6 8, 9, 12, 16

Question: Where should B be split?

Answer: Left side should have numbers less than A[mid] (i.e., 8)

3, 5, 7 10, 11, 13, 14, 15
1,2,3,4,5,6,7 8,9,10,11,12,13,14,15,16

Making Merge Efficient

• Divide-and-conquer is efficient when splitting the input in halves

• We always split A in half, but B might be split badly

20

Question: How can we fix this?

Answer: Always split the larger of the two sequences

Question: How do we find the split point?

Answer: Use binary search!

Implementing Merge

21

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: return A
 if |A| == |B| == 1: return [min(A[0], B[0]), max(A[0], B[0])]

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|)
 ML, MB = parallel (merge(LA, LB), merge(RA, RB))
 return append(ML, MB)

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: return A
 if |A| == |B| == 1: return [min(A[0], B[0]), max(A[0], B[0])]

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|)
 ML, MB = parallel (merge(LA, LB), merge(RA, RB))
 return append(ML, MB)

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: return A
 if |A| == |B| == 1: return [min(A[0], B[0]), max(A[0], B[0])]

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|)
 ML, MB = parallel (merge(LA, LB), merge(RA, RB))
 return append(ML, MB)

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: return A
 if |A| == |B| == 1: return [min(A[0], B[0]), max(A[0], B[0])]

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|)
 ML, MB = parallel (merge(LA, LB), merge(RA, RB))
 return append(ML, MB)

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: return A
 if |A| == |B| == 1: return [min(A[0], B[0]), max(A[0], B[0])]

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|-k)
 ML, MB = parallel (merge(LA, LB), merge(RA, RB))
 return append(ML, MB)

Oops: This implementation has an efficiency problem :(

Cost Analysis of Merge

• The primary issue is the append(ML, MB) step, which costs 𝑂 𝑛

• This makes the work recurrence balanced, so it solves to 𝑂 𝑛 log 𝑛

• i.e., the function does 𝑂 𝑛 work per level for 𝑂 log 𝑛 levels of recursion

22

Claim (Cost of Merge): This merge function costs Θ 𝑛 log 𝑛 work

Fix: An efficient merge needs to write into a pre-allocated
output array to avoid the expensive append (i.e., impure)

Efficient (Impure) Merge

23

fun merge(A: sequence<T>, B : sequence<T>, Out : mutable sequence<T>):
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: Out[0...|A|] ← A; return
 if |A| == |B| == 1: Out[0...1] ← [min(A[0], B[0]), max(A[0], B[0])]; return

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|-k)
 Lout, Rout = subseq(Out,0,|LA|+|LB|), subseq(Out,|LA|+|LB|,|RA|+|RB|)
 _, _ = parallel (merge(LA, LB, Lout), merge(RA, RB, Rout))

Note: You can write an 𝑂 𝑛 work pure merge, but you must store the
input as balanced BSTs (they can be appended in 𝑂 log 𝑛 time!)

fun merge(A: sequence<T>, B : sequence<T>, Out : mutable sequence<T>):
 if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

 if |B| == 0: Out[0...|A|] ← A; return
 if |A| == |B| == 1: Out[0...1] ← [min(A[0], B[0]), max(A[0], B[0])]; return

 LA, RA = split_mid(A)
 k = binary_search(B, RA[0]) // k = smallest index such that B[k] >= RA[0]
 LB, RB = subseq(B,0,k), subseq(B,k,|B|-k)
 Lout, Rout = subseq(Out,0,|LA|+|LB|), subseq(Out,|LA|+|LB|,|RA|+|RB|)
 _, _ = parallel (merge(LA, LB, Lout), merge(RA, RB, Rout))

Cost Analysis of Efficient Merge

• 𝐴 ≥ 𝐵 and 𝐴 gets halved, so 𝑛 in the recursive calls is ∈ 0.25𝑛, 0.75𝑛

• Let 𝑊 𝑛 be the work of merge on an input of size 𝑛.

𝑊 𝑛 = 𝑊 𝛼𝑛 + 𝑊 1 − 𝛼 𝑛 + Θ log 𝑛 , 𝛼 ∈ [0.25, 0.75]

• Can verify with the substitution method that 𝑊 𝑛 ∈ 𝑂 𝑛

24

Claim (Cost of Merge): The efficient merge (impure) function costs 𝑂 𝑛

work and 𝑂 log2𝑛 span, where 𝑛 = 𝐴 + |𝐵|.

• For the span, 𝑆 𝑛 ≤ 𝑆 0.75𝑛 + Θ(log 𝑛)

• Unrolling this recurrence, it has log4/3𝑛 levels, so 𝑆 𝑛 ∈ 𝑂 log2𝑛

Merge as an Associative Function

• Therefore, we can reduce it!

reduce(merge, [], map(singleton, s))

25

Claim (Merge is Associative): The Merge operation on two sorted
sequences is an associative operation.

Question: What algorithm is this?

Note: singleton(x) returns [x]

[8, 5, 7, 4, 1, 3, 9, 2][[8],[5],[7],[4],[1],[3],[9],[2]]reduce(merge, [], [[8],[5],[7],[4],[1],[3],[9],[2]])

Answer: Its MergeSort! In just one line of code :D

Final Thoughts

• Instead of reduce, what if we did a left fold?

26

fold_left(merge, [], map(singleton, s))

Question: What algorithm is this?

Answer: Its Insertion Sort!

Final Note: You can improve the span of merge to 𝑂 log 𝑛 but
the algorithm is a little more complicated.

Summary

• Reduce is a fold over an associative operation

• Applicable to fewer functions because of the associativity requirement

• But as a result, highly parallel instead of completely sequential!

• Reduce can be implemented with divide-and-conquer

• 𝑂(|𝑆|) work and 𝑂(log |𝑆|) span assuming f is constant time

• Divide-and-conquer algorithms with trivial divide steps can
be converted into reductions with a specific combine function!

• Merge can be implemented as a divide-and-conquer algorithm

• Efficiency sometimes requires impure code!
27

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Reduce
	Slide 4: Recall: Parallel Sum
	Slide 5: Generalizing Sums: Folds
	Slide 6: Generalizing Sums: Reductions
	Slide 7: Reduce
	Slide 8: Understanding Reduce
	Slide 9: Look Familiar?
	Slide 10: Recall from MCSSLab
	Slide 11: Hang on, That's Just Reduce!
	Slide 12: Recall from Paren Match (Reci)
	Slide 13: It's Reduce Again!
	Slide 14: Reduce as "Generic D&C"
	Slide 15: Reduce as "Generic D&C"
	Slide 16: Merge
	Slide 17: Merge
	Slide 18: Divide-and-conquer merge
	Slide 19: Finding the Split Point
	Slide 20: Making Merge Efficient
	Slide 21: Implementing Merge
	Slide 22: Cost Analysis of Merge
	Slide 23: Efficient (Impure) Merge
	Slide 24: Cost Analysis of Efficient Merge
	Slide 25: Merge as an Associative Function
	Slide 26: Final Thoughts
	Slide 27: Summary

