Parallel And Sequential Data
Structures and Algorithms

Divide-and-Conquer and Reduce



Learning Objectives

« Understand folds and reductions as generalizations of sums
« See how to implement reduce using divide-and-conquer

» See how to implement divide-and-conquer using reduce

 Learn the divide-and-conquer algorithm for merge

« Understand the uses of merge as an associative function



Reduce




Recall: Parallel Sum

fun sum(S : sequence<int>) -> int:

) IR. LECtUITel gn'?jll WE dsaw match length(S) with:
this paralle |_V| €-and- case 0: return 0 // Empty sequence
conquer algorithm for sum case 1: return S[0] // Singleton sequence
- case _:
It runs In O(n) work and L, R = split_mid(S) // Helper function

0(10g n) Span Lsum, Rsum = parallel (sum(L), sum(R))
return Lsum + Rsum

Question: How can we generalize this?




Generalizing Sums: Folds

* There are several ways we can generalize the notion of a sum
So+S1+S, + - +S,-1+ S

Definition (Fold): A (left) fold over some sequence s with a binary
operation f and an initial value I computes

f(f(f(f(f(II SO))Sl)JSZ)) ---:Sn—l)»Sn)

« Left/right folds are defined left-to-right or right-to-left, so they
are inherently sequential! We can not hope to parallelize this.



Generalizing Sums: Reductions

» Folds are not parallelizable because they typically prescribe a
particular evaluation order (e.qg., left-to-right or right-to-left)

* A reduction is a fold that can be arbitrarily parenthesized
(5o + (51 +52)) + -+ (Sp_q + Sp)

Definition (Reduce): A reduce over some sequence s with a binary

associative operation f and an identity value I computes a fold of f
over s where the order of applications of f may be arbitrary

f (f(So»f(SpSz))’ ""f(sn—l’sn))



Reduce

By relaxing the order, reduce becomes highly parallelizable

» The implementation matches our parallel sum, which took
advantage of the associativity of + for integers

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
match length(S) with:
case O: return I
case 1: return S[0Q]

case _
L, R = split mid(S)
Lres, Rres = parallel (reduce(L), reduce(R))
return f(Lres, Rres)




Understanding Reduce

reduce : (f : (T, T) ->T, I : T, S : sequence<T>) -> T
« £ must be an associative function. Formally
« f(f(x,y),z) = f(x,f(y,z)) forall values x,y,z of type T

« T must be an identity, Formally
« f(I,x) = xand f(x, I) = x forall values x of type T

Theorem (Cost of Reduce): Assuming that f can be evaluated in
constant time, reduce costs 0(|S|) work and O(log |S]|) span.

« Work recurrence is leaf dominated with 0(|S|) leaves



Look Familiar?




Recall from MCSSLab

(mi,pl,s1,t1), (m2,p2,s2,t2)

return (max(sl + p2, ml, m2),
max(pl, t1l + p2),
max(s2, t2 + sl),
t1+t2)
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Hang on, That's Just Reduce!

type sums = (int,int,int,int)

fun combine smcss((ml,pl,s1,tl) : sums, (m2,p2,s2,t2) : sums) -> sums:
return (max(sl + p2, ml, m2),
max(pl, t1 + p2),
max(s2, t2 + sl1),
t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
fun base(x : int): return (max(@,x),max(0,x),max(0,x),X)
return reduce(combine smcss, (0,0,0,0), map(base, S))
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Recall from Paren Match (Reci)

(i)j)J (le)
if j <= k: return (1 + k - j, 1)
else: return (i, 1 + j - k)
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It's Reduce Again!

fun combine paren((i : int, j : int), (k : int, 1 : int)) -> (int, int):
return (1 + k - j, 1) if j <= k else (i, 1 + j - k)

fun excessParens(p : sequence<Paren>) -> (int,int):
fun base(x : Paren): return (0,1) if x == L else (1,0)
return reduce(combine_paren, (0,0), map(base, p))
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Reduce as "Generic D&C"

fun algo(S : sequence<T>):
match length(S) with:
case O: return empty
case 1: return base(S[9])

case _
L, R = split mid(S)
Lres, Rres = parallel (algo(L), algo(R))
return combine(Lres, Rres)

fun algo(s : sequence<T>):
return reduce(combine, empty, map(base, s))




Reduce as "Generic D&C"

« Works when the "divide" step is trivial: just split input in half
and recurse--don't do anything with the halves before recursion

* When the "conquer" step can be expressed as an associative
function combine which combines the left and right result

fun algo(S : sequence<T>):
match length(S) with:
case 0: return empty
case 1: return base(S[0])

case _
L, R = split mid(S)
Lres, Rres = parallel (algo(L), algo(R))
return combine(Lres, Rres)
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Merge




Merge

 Recall the merge operation from 15-122 and 15-150:

Definition (Merge): Given two sorted sequences, return a sorted
sequence containing the elements of both

fun merge(A : sequence<T>, B : sequence<T>) -> sequence<T>

* A simple sequential implementation runs in 0(n) time
* How can we make this parallel?

Answer: Let's try divide-and-conquer!
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Divide-and-conquer merge

» Input is two sequences, not one! May not be the same length!
« Which one(s) do we divide? What if we divide both in half?

1,2,3,4,5,6,7,10 8,9,11,12,13,14,15,16

Not sorted!
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Finding the Split Point

« Let's still split the first sequence (A) in half

Question: Where should B be split?

Answer: Left side should have numbers less than A[mid] (i.e., 8)

1,2,3,4,5,6,7 8,9,10,11,12,13,14,15,16
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Making Merge Efficient

* Divide-and-conquer is efficient when splitting the input in halves
« We always split A in half, but B might be split badly

Question: How can we fix this?

Answer: Always split the /arger of the two sequences

Question: How do we find the split point?

Answer: Use binary search!
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Implementing Merge

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

if (B return A

0:
if |A |IB| == 1: return [min(A[@], B[@]), max(A[@], B[@])]

LA, RA = split mid(A)

k = binary_search(B, RA[@®]) // k = smallest index such that B[k] >= RA[@]
LB, RB = subseq(B,0,k), subseq(B,k, |B]|-k)

ML, MB = parallel (merge(LA, LB), merge(RA, RB))

return append(ML, MB)

Oops: This implementation has an efficiency problem :(
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Cost Analysis of Merge

Claim (Cost of Merge): This merge function costs ©(n log n) work

« The primary issue is the append (ML, MB) step, which costs 0(n)
« This makes the work recurrence balanced, so it solves to 0(nlog n)
* /.e., the function does 0(n) work per level for O(log n) levels of recursion

Fix: An efficient merge needs to write into a pre-allocated

output array to avoid the expensive append (i.e., impure)
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Efficient (Impure) Merge

fun merge Out : mutable sequence<T>

Out[o...|A|] « A
Out[@...1] « [min(A[@], B[@]), max(A[@], B[0O])]

Note: You can write an 0(n) work pure merge, but you must store the
input as balanced BSTs (they can be appended in O(log n) time!)
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Cost Analysis of Efficient Merge

Claim (Cost of Merge): The efficient merge (impure) function costs 0(n)

work and 0(log?n) span, where n = |A]| + |B]|.

* |A| = |B| and |A| gets halved, so n in the recursive calls is € [0.25n, 0.75n]

« Let W(n) be the work of merge on an input of size n.
Wmn) =W(an) + W((l — a)n) + O(log n), a € [0.25,0.75]
 Can verify with the substitution method that W (n) € 0(n)
 For the span, S(n) < S(0.75n) + ©(log n)
» Unrolling this recurrence, it has log,/3n levels, so S(n) € 0(log?n)
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Merge as an Associative Function

Claim (Merge is Associative): The Merge operation on two sorted

sequences is an associative operation.

. Therefore, we can reduce it! [ Note: singleton(x) returns [x] ]
, |

reduce(merge, [], map(singleton, s))

reduce(merge, [], [[8],[5],[7],[4],[1],[3],[9],[2]])

Question: What algorithm is this?

Answer. Its MergeSort! In just one line of code :D
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Final Thoughts

 Instead of reduce, what if we did a left fold?

fold left(merge, [], map(singleton, s))

Question: What algorithm is this?

Answer. 1ts Insertion Sort!

Final Note: You can improve the span of merge to 0O(log n) but
the algorithm is a little more complicated.
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Summary

- Reduce is a fold over an associative operation
 Applicable to fewer functions because of the associativity requirement
« But as a result, highly parallel instead of completely sequential!

« Reduce can be implemented with divide-and-conquer
* 0(|S|) work and O(log |S|) span assuming f is constant time

 Divide-and-conquer algorithms with trivial divide steps can
be converted into reductions with a specific combine function!

* Merge can be implemented as a divide-and-conquer algorithm
« Efficiency sometimes requires impure code!
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