Parallel And Sequential Data
Structures and Algorithms

Divide-and-Conquer and Reduce

Learning Objectives

« Understand folds and reductions as generalizations of sums
« See how to implement reduce using divide-and-conquer

» See how to implement divide-and-conquer using reduce

 Learn the divide-and-conquer algorithm for merge

« Understand the uses of merge as an associative function

Reduce

Recall: Parallel Sum

fun sum(S : sequence<int>) -> int:

) IR. LECtUITel gn'?jll WE dsaw match length(S) with:
this paralle |_V| €-and- case 0: return 0 // Empty sequence
conquer algorithm for sum case 1: return S[0] // Singleton sequence
- case _:
It runs In O(n) work and L, R = split_mid(S) // Helper function

0(10g n) Span Lsum, Rsum = parallel (sum(L), sum(R))
return Lsum + Rsum

Question: How can we generalize this?

Generalizing Sums: Folds

* There are several ways we can generalize the notion of a sum
So+S1+S, + - +S,-1+ S

Definition (Fold): A (left) fold over some sequence s with a binary
operation f and an initial value I computes

f(f(f(f(f(II SO))Sl)JSZ)) ---:Sn—l)»Sn)

« Left/right folds are defined left-to-right or right-to-left, so they
are inherently sequential! We can not hope to parallelize this.

Generalizing Sums: Reductions

» Folds are not parallelizable because they typically prescribe a
particular evaluation order (e.qg., left-to-right or right-to-left)

* A reduction is a fold that can be arbitrarily parenthesized
(5o + (51 +52)) + -+ (Sp_q + Sp)

Definition (Reduce): A reduce over some sequence s with a binary

associative operation f and an identity value I computes a fold of f
over s where the order of applications of f may be arbitrary

f (f(So»f(SpSz))’ ""f(sn—l’sn))

Reduce

By relaxing the order, reduce becomes highly parallelizable

» The implementation matches our parallel sum, which took
advantage of the associativity of + for integers

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
match length(S) with:
case O: return I
case 1: return S[0Q]

case _
L, R = split mid(S)
Lres, Rres = parallel (reduce(L), reduce(R))
return f(Lres, Rres)

Understanding Reduce

reduce : (f : (T, T) ->T, I : T, S : sequence<T>) -> T
« £ must be an associative function. Formally
« f(f(x,y),z) = f(x,f(y,z)) forall values x,y,z of type T

« T must be an identity, Formally
« f(I,x) = xand f(x, I) = x forall values x of type T

Theorem (Cost of Reduce): Assuming that f can be evaluated in
constant time, reduce costs 0(|S|) work and O(log |S]|) span.

« Work recurrence is leaf dominated with 0(|S|) leaves

Look Familiar?

Recall from MCSSLab

(mi,pl,s1,t1), (m2,p2,s2,t2)

return (max(sl + p2, ml, m2),
max(pl, t1l + p2),
max(s2, t2 + sl),
t1+t2)

10

Hang on, That's Just Reduce!

type sums = (int,int,int,int)

fun combine smcss((ml,pl,s1,tl) : sums, (m2,p2,s2,t2) : sums) -> sums:
return (max(sl + p2, ml, m2),
max(pl, t1 + p2),
max(s2, t2 + sl1),
t1+t2)

fun smcss(S : sequence<int>) -> (int,int,int,int):
fun base(x : int): return (max(@,x),max(0,x),max(0,x),X)
return reduce(combine smcss, (0,0,0,0), map(base, S))

11

Recall from Paren Match (Reci)

(i)j)J (le)
if j <= k: return (1 + k - j, 1)
else: return (i, 1 + j - k)

12

It's Reduce Again!

fun combine paren((i : int, j : int), (k : int, 1 : int)) -> (int, int):
return (1 + k - j, 1) if j <= k else (i, 1 + j - k)

fun excessParens(p : sequence<Paren>) -> (int,int):
fun base(x : Paren): return (0,1) if x == L else (1,0)
return reduce(combine_paren, (0,0), map(base, p))

13

Reduce as "Generic D&C"

fun algo(S : sequence<T>):
match length(S) with:
case O: return empty
case 1: return base(S[9])

case _
L, R = split mid(S)
Lres, Rres = parallel (algo(L), algo(R))
return combine(Lres, Rres)

fun algo(s : sequence<T>):
return reduce(combine, empty, map(base, s))

Reduce as "Generic D&C"

« Works when the "divide" step is trivial: just split input in half
and recurse--don't do anything with the halves before recursion

* When the "conquer" step can be expressed as an associative
function combine which combines the left and right result

fun algo(S : sequence<T>):
match length(S) with:
case 0: return empty
case 1: return base(S[0])

case _
L, R = split mid(S)
Lres, Rres = parallel (algo(L), algo(R))
return combine(Lres, Rres)

15

Merge

Merge

 Recall the merge operation from 15-122 and 15-150:

Definition (Merge): Given two sorted sequences, return a sorted
sequence containing the elements of both

fun merge(A : sequence<T>, B : sequence<T>) -> sequence<T>

* A simple sequential implementation runs in 0(n) time
* How can we make this parallel?

Answer: Let's try divide-and-conquer!

17

Divide-and-conquer merge

» Input is two sequences, not one! May not be the same length!
« Which one(s) do we divide? What if we divide both in half?

1,2,3,4,5,6,7,10 8,9,11,12,13,14,15,16

Not sorted!

18

Finding the Split Point

« Let's still split the first sequence (A) in half

Question: Where should B be split?

Answer: Left side should have numbers less than A[mid] (i.e., 8)

1,2,3,4,5,6,7 8,9,10,11,12,13,14,15,16

19

Making Merge Efficient

* Divide-and-conquer is efficient when splitting the input in halves
« We always split A in half, but B might be split badly

Question: How can we fix this?

Answer: Always split the /arger of the two sequences

Question: How do we find the split point?

Answer: Use binary search!

20

Implementing Merge

fun merge(A: sequence<T>, B : sequence<T>) -> sequence<T>:
if |B| > |A|: swap(A, B) // WLOG assume A is larger than B

if (B return A

0:
if |A |IB| == 1: return [min(A[@], B[@]), max(A[@], B[@])]

LA, RA = split mid(A)

k = binary_search(B, RA[@®]) // k = smallest index such that B[k] >= RA[@]
LB, RB = subseq(B,0,k), subseq(B,k, |B]|-k)

ML, MB = parallel (merge(LA, LB), merge(RA, RB))

return append(ML, MB)

Oops: This implementation has an efficiency problem :(

21

Cost Analysis of Merge

Claim (Cost of Merge): This merge function costs ©(n log n) work

« The primary issue is the append (ML, MB) step, which costs 0(n)
« This makes the work recurrence balanced, so it solves to 0(nlog n)
* /.e., the function does 0(n) work per level for O(log n) levels of recursion

Fix: An efficient merge needs to write into a pre-allocated

output array to avoid the expensive append (i.e., impure)

22

Efficient (Impure) Merge

fun merge Out : mutable sequence<T>

Out[o...|A|] « A
Out[@...1] « [min(A[@], B[@]), max(A[@], B[0O])]

Note: You can write an 0(n) work pure merge, but you must store the
input as balanced BSTs (they can be appended in O(log n) time!)

23

Cost Analysis of Efficient Merge

Claim (Cost of Merge): The efficient merge (impure) function costs 0(n)

work and 0(log?n) span, where n = |A]| + |B]|.

* |A| = |B| and |A| gets halved, so n in the recursive calls is € [0.25n, 0.75n]

« Let W(n) be the work of merge on an input of size n.
Wmn) =W(an) + W((l — a)n) + O(log n), a € [0.25,0.75]
 Can verify with the substitution method that W (n) € 0(n)
 For the span, S(n) < S(0.75n) + ©(log n)
» Unrolling this recurrence, it has log,/3n levels, so S(n) € 0(log?n)

24

Merge as an Associative Function

Claim (Merge is Associative): The Merge operation on two sorted

sequences is an associative operation.

. Therefore, we can reduce it! [Note: singleton(x) returns [x]]
, |

reduce(merge, [], map(singleton, s))

reduce(merge, [], [[8],[5],[7],[4],[1],[3],[9],[2]])

Question: What algorithm is this?

Answer. Its MergeSort! In just one line of code :D

25

Final Thoughts

 Instead of reduce, what if we did a left fold?

fold left(merge, [], map(singleton, s))

Question: What algorithm is this?

Answer. 1ts Insertion Sort!

Final Note: You can improve the span of merge to 0O(log n) but
the algorithm is a little more complicated.

26

Summary

- Reduce is a fold over an associative operation
 Applicable to fewer functions because of the associativity requirement
« But as a result, highly parallel instead of completely sequential!

« Reduce can be implemented with divide-and-conquer
* 0(|S|) work and O(log |S|) span assuming f is constant time

 Divide-and-conquer algorithms with trivial divide steps can
be converted into reductions with a specific combine function!

* Merge can be implemented as a divide-and-conquer algorithm
« Efficiency sometimes requires impure code!

27

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Reduce
	Slide 4: Recall: Parallel Sum
	Slide 5: Generalizing Sums: Folds
	Slide 6: Generalizing Sums: Reductions
	Slide 7: Reduce
	Slide 8: Understanding Reduce
	Slide 9: Look Familiar?
	Slide 10: Recall from MCSSLab
	Slide 11: Hang on, That's Just Reduce!
	Slide 12: Recall from Paren Match (Reci)
	Slide 13: It's Reduce Again!
	Slide 14: Reduce as "Generic D&C"
	Slide 15: Reduce as "Generic D&C"
	Slide 16: Merge
	Slide 17: Merge
	Slide 18: Divide-and-conquer merge
	Slide 19: Finding the Split Point
	Slide 20: Making Merge Efficient
	Slide 21: Implementing Merge
	Slide 22: Cost Analysis of Merge
	Slide 23: Efficient (Impure) Merge
	Slide 24: Cost Analysis of Efficient Merge
	Slide 25: Merge as an Associative Function
	Slide 26: Final Thoughts
	Slide 27: Summary

