
Parallel And Sequential Data
Structures and Algorithms

Contraction and Scan

1

Learning Objectives

• Understand contraction as a technique for designing efficient
parallel algorithms for sequences

• Understand the scan problem on sequences, and an efficient
algorithm for it via contraction

• Practice applications of scan for precomputing prefix sums
and prefix minimums

2

Contraction

3

Contraction

Reduce (Divide-and-conquer)

4

Idea: Divide-and-conquer reduces a problem to multiple smaller
problems. Contraction reduces a problem to one smaller problem.

2, 1, 4, 3, 6, 2, 3, 1

2, 1, 4, 3 6, 2, 3, 1

reduce reduce

=
>

=
>

10 12
22

2, 1, 4, 3, 6, 2, 3, 1

Reduce (Contraction)

3, 7, 8, 4

reduce

=
>

22

Contraction-based Reduce

• Divide-and-conquer is parallel by doing the recursive calls in parallel

• Since there's only one recursive call, the parallelism is now instead
in the contraction step

5

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + [S[|S|-1]] if |S|%2 == 1 else []
 return reduce(f, I, B)

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + [S[|S|-1]] if |S|%2 == 1 else []
 return reduce(f, I, B)

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + [S[|S|-1]] if |S|%2 == 1 else []
 return reduce(f, I, B)

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
 match length(S) with:
 case 0: return I
 case 1: return S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2-1]
 + [S[|S|-1]] if |S|%2 == 1 else []
 return reduce(f, I, B)

Contraction-based Reduce (Analysis)

• Work:
• 𝑊(𝑛) = 𝑊(𝑛/2) + 𝑂(𝑛)

• 𝑊(𝑛) = 𝑂(𝑛 + 𝑛/2 + 𝑛/4 + …) = 𝑂(𝑛)

• Span:
• 𝑆 𝑛 = 𝑆 𝑛/2 + 𝑂(1)

• 𝑆 𝑛 = 𝑂(log 𝑛)

6

Theorem (Cost of Contraction-Based Reduce): Assuming that f can
be evaluated in constant time, reduce implemented with contraction also
costs 𝑂 𝑆 work and 𝑂 log 𝑆 span.

𝑛

𝑛/2

𝑛/4

1

⋮

Scan

7

Scan

• Scan returns:
• A sequence containing [𝐼, 𝑓 𝐼, 𝑆 0 , 𝑓 𝑓 𝐼, 𝑆 0 , 𝑆 1 , …]

• The total sum, equivalent to reduce(f, I, S)

8

Definition (Scan): Given a sequence 𝑆, an associative function and an
identity, scan computes the reduction of every prefix of 𝑆

scan : (f : (T, T) -> T, I : T, S : sequence<T>)

-> (sequence<T>, T)

Sounds quite sequential… but it turns out to be highly parallelizable!

Inefficient Scan

• We could use brute force (but please don't)

9

fun scan(f : (T, T) -> T, I : T, S : sequence<T>) -> (sequence<T>, T):
 return tabulate(fn i => reduce(f, I, subseq(S, 0, i)), |S|), reduce(f, I, S)

• This costs 𝑂(𝑛2) work (but at least its 𝑂 log 𝑛 span!)

Exercise: Implement scan using divide-and-conquer. This

will cost 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) span

• This is much more efficient, but we can still do better!

Contraction-based Scan

10

2, 1, 4, 3, 6, 2, 3, 1

3, 7, 8, 4

scan

=
>

0, 3, 10, 18 , 22

0, 2, 3, 7, 10, 16, 18, 21 , 22

0, __, 3, __, 10, __, 18, __

Contraction

Expansion

, 22

2, 1, 4, 3, 6, 2, 3, 1

S

S

2 7 16 21

Contraction-based Scan

11

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
 match length(S) with:
 case 0: return [], I
 case 1: return [I], S[0]
 case _:
 B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2-1]
 + ([S[|S|-1]] if |S|%2 == 1 else [])
 R, total = scan(f, I, B)
 return tabulate(fn i => R[i/2] if i%2==0
 else f(R[i/2], S[i-1]), |S|), total

Analysis of Scan

• Work:
• 𝑊(𝑛) = 𝑊(𝑛/2) + 𝑂(𝑛)

• 𝑊(𝑛) = 𝑂(𝑛 + 𝑛/2 + 𝑛/4 + …) = 𝑂(𝑛)

• Span:
• 𝑆 𝑛 = 𝑆 𝑛/2 + 𝑂(1)

• 𝑆 𝑛 = 𝑂(log 𝑛)

12

Theorem (Cost of Scan): Assuming that f can be evaluated in constant
time, scan costs 𝑂 𝑆 work and 𝑂 log 𝑆 span.

𝑛

𝑛/2

𝑛/4

1

⋮

Applications

13

MCSS Revisited

• Recall RefreshLab: Brute-force MCSS

14

• 𝑂(𝑛2) contiguous subsequences; reduce costs 𝑂 𝑛 work and
𝑂 log 𝑛 span; so, this costs 𝑂 𝑛3 work and 𝑂 log 𝑛 span

• What is redundant here?

fun mcss(S : sequence<int>) -> int:
 fun sum(i : int, k : int): return reduce(plus, 0, subseq(S, i, k))
 sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
 return reduce(max, -∞, sums)

Improved Brute-Force MCSS

• We are computing reduce repeatedly! 𝑂 𝑛2 times!

• Scan can give us the sum of every prefix

15

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]

 fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
 sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
 return reduce(max, -∞, sums)

Fact: sum(S[i…j)) = sum(S[0…j)) – sum(S[0…i)])

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]

 fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
 sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
 return reduce(max, -∞, sums)

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]

 fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
 sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
 return reduce(max, -∞, sums)

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]

 fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
 sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
 return reduce(max, -∞, sums)

Analysis of Improved Brute-Force

• Each sum computation now takes 𝑂 1 time!

• Evaluating all 𝑂(𝑛2) contiguous subsequences therefore costs
𝑂(𝑛2) work and 𝑂 log 𝑛 span

16

There is still redundancy in this algorithm!

• Suppose the MCSS ends at index j-1

ji

• Sum is prefix_sum[j] – prefix_sum[i]

• We are still brute-forcing over every starting index i

Optimized Brute-Force: Prefix Min

17

• Sum is prefix_sum[j] – prefix_sum[i]

• To maximize this quantity, we want

min_prefix = min
𝑖<𝑗

prefix_sum[i]

• i.e., we want the minimum of prefix_sum in every prefix

min is an associative operation. That's just another scan!

• The optimal MCSS ending with element j is then

prefix_sum[j] − min_prefix[j]

Optimized MCSS Example

-2 1 -3 4 -1 2 1 -5 4

18

S

prefix_sum 0 -2 -1 -4 0 -1 1 2 -3 10 -2 -1 -4 0 -1 1 2 -3 1

min_prefix -∞ 0 -2 -2 -4 -4 -4 -4 -4 -4

MCSS = prefix_sum[j] − min_prefix[j] = 2 – (-4) = 6

-∞ 0 -2 -2 -4 -4 -4 -4 -4 -4

Optimal MCSS With Scan

• Two scans and a reduce, each of which costs 𝑂 𝑛 work and
𝑂 log 𝑛 span, so the total cost is 𝑂 𝑛 work and 𝑂 log 𝑛 span!

• Same bounds as our previous divide-and-conquer algorithm

19

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]
 min_prefix, _ = scan(min, ∞, prefix_sum)
 mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
 return reduce(max, -∞, mcss_j)

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]
 min_prefix, _ = scan(min, ∞, prefix_sum)
 mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
 return reduce(max, -∞, mcss_j)

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]
 min_prefix, _ = scan(min, ∞, prefix_sum)
 mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
 return reduce(max, -∞, mcss_j)

fun mcss(S : sequence<int>) -> int:
 splus, total = scan(plus, 0, S)
 prefix_sum = splus + [total]
 min_prefix, _ = scan(min, ∞, prefix_sum)
 mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
 return reduce(max, -∞, mcss_j)

Scan With Custom
Associative Functions

20

Review: Associative Functions

21

• Recall the two requirements for reduce and scan:
• f must be an associative function. Formally

• f(f(x,y),z) = f(x,f(y,z)) for all values x,y,z of type T

• I must be an identity, Formally
• f(I,x) = x and f(x, I) = x for all values x of type T

Scan can be used to compute the prefix-"sums" of any
associative function

N N 5 5 3 3 3 2 2 3

Propagating Right

• scan with clever associative functions can compute things that
sound like sequential, but in parallel!

22

Problem (Previous SOME): Given a sequence 𝑆 of optional<T>, for

every position 0 ≤ 𝑖 < 𝑆 , compute the rightmost SOME (i.e., non-NONE)
value that occurs before position 𝑖 (i.e., the most recent one left-to-right).

N 5 N 3 N N 2 N 3 1

Left-to-right computation

• We could compute this sequentially by folding from left to right

23

fun take_right_some(a : optional<T>, b : optional<T>) -> optional<T>:
 match b with:
 case SOME(_): return b
 case _: return a

But wait!!

Theorem (Associativity): take_right_some is associative.

• Therefore, we can solve Previous SOME in parallel with scan

Associativity Proof

• Let x,y,z be values of type optional<T>.

• WTS that f(f(x,y),z) = f(x,f(y,z))

24

Theorem (Associativity): take_right_some is associative.

x y z f(x,y) f(y,z) f(f(x,y),z) f(x,f(y,z))

SOME(x) SOME(y) SOME(z) SOME(y) SOME(z) SOME(z) SOME(z)

SOME(x) SOME(y) NONE SOME(y) SOME(y) SOME(y) SOME(y)

SOME(x) NONE SOME(z) SOME(x) SOME(z) SOME(z) SOME(z)

SOME(x) NONE NONE SOME(x) NONE SOME(x) SOME(x)

Associativity Proof (continued)

• Let x,y,z be values of type optional<T>.

• WTS that f(f(x,y),z) = f(x,f(y,z))

25

Theorem (Associativity): take_right_some is associative.

x y z f(x,y) f(y,z) f(f(x,y),z) f(x,f(y,z))

NONE SOME(y) SOME(z) SOME(y) SOME(z) SOME(z) SOME(z)

NONE SOME(y) NONE SOME(y) SOME(y) SOME(y) SOME(y)

NONE NONE SOME(z) NONE SOME(z) SOME(z) SOME(z)

NONE NONE NONE NONE NONE NONE NONE

Parallel Previous SOME

• Since its associative, we can use take_right_some with scan

26

fun previous_some(S : sequence<optional<T>>) -> sequence<optional<T>>:
 fun take_right_some(a : optional<T>, b : optional<T>) -> optional<T>:
 match b with:
 case SOME(_): return b
 case _: return a
 propagated, _ = scan(take_right_sum, NONE, S)
 return propagated

• This gives us, in 𝑂 𝑛 work and 𝑂 log 𝑛 span, the previous
non-NONE option at every position in the sequence

Summary

• Contraction differs from divide-and-conquer by reducing a
problem to one smaller version of itself, instead of multiple

• Contraction gives us an efficient 𝑂 𝑛 work and 𝑂 log 𝑛
implementation of scan, a highly useful sequence algorithm

• Scan can be used to compute prefix sums (or prefix
min/max) which can be used to optimize inefficient algorithms

• We can use custom associative functions with scan to solve
problems that seem inherently sequential (but aren't!)

27

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Contraction
	Slide 4: Contraction
	Slide 5: Contraction-based Reduce
	Slide 6: Contraction-based Reduce (Analysis)
	Slide 7: Scan
	Slide 8: Scan
	Slide 9: Inefficient Scan
	Slide 10: Contraction-based Scan
	Slide 11: Contraction-based Scan
	Slide 12: Analysis of Scan
	Slide 13: Applications
	Slide 14: MCSS Revisited
	Slide 15: Improved Brute-Force MCSS
	Slide 16: Analysis of Improved Brute-Force
	Slide 17: Optimized Brute-Force: Prefix Min
	Slide 18: Optimized MCSS Example
	Slide 19: Optimal MCSS With Scan
	Slide 20: Scan With Custom Associative Functions
	Slide 21: Review: Associative Functions
	Slide 22: Propagating Right
	Slide 23: Left-to-right computation
	Slide 24: Associativity Proof
	Slide 25: Associativity Proof (continued)
	Slide 26: Parallel Previous SOME
	Slide 27: Summary

