Parallel And Sequential Data
Structures and Algorithms

Contraction and Scan



Learning Objectives

« Understand contraction as a techniqgue for designing efficient
parallel algorithms for sequences

« Understand the scan problem on sequences, and an efficient
algorithm for it via contraction

* Practice applications of scan for precomputing prefix sums
and prefix minimums



Contraction




Contraction

Idea: Divide-and-conquer reduces a problem to multiple smaller
problems. Contraction reduces a problem to one smaller problem.
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Contraction-based Reduce

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
match length(S) with:
case 9: return I
case 1: return S[0Q]

case _:
B = parallel [f(S[2*i], S[2*i+1]) for i in @...|S|/2-1]
+ [S[|S]|-1]] if |S|%2 == 1 else []
return reduce(f, I, B)

* Divide-and-conquer is parallel by doing the recursive calls in parallel

» Since there's only one recursive call, the parallelism is now instead
in the contraction step



Contraction-based Reduce (Analysis)

Theorem (Cost of Contraction-Based Reduce): Assuming that f can

be evaluated in constant time, reduce implemented with contraction also
costs O(|S|) work and O(log |S|) span.

« Work:
e Wn) = Wn/2) + 0(n)

i{i e W(n) = 0(n + /2 + n/4 + ..) = 0(n)
n/4 - Span:

e S(n) =S(n/2)+0(1)

* S(n) = 0(logn)



Scan




Scan

Definition (Scan): Given a sequence S, an associative function and an

identity, scan computes the reduction of every prefix of S

scan : (f : (T, T) ->T, I : T, S : sequence<T>)
-> (sequence<T>, T)
- Scan returns:

A sequence containing [I, f(I,S]0]), f(f,S[0]),S[1]), ...]
* The total sum, equivalent to reduce(f, I, S)

Sounds quite sequential... but it turns out to be highly parallelizable!
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Inefficient Scan

» We could use brute force (but please don't)

fun scan(f : (T, T) -> T, I : T, S : sequence<T>) -> (sequence<T>, T):
return tabulate(fn i => reduce(f, I, subseq(S, @, i)), |S|), reduce(f, I, S)

» This costs 0(n*) work (but at least its 0(log n) span!)

Exercise: Implement scan using divide-and-conquer. This

will cost 0(n log n) work and O (log n) span

 This is much more efficient, but we can still do better!



Contraction-based Scan

Contraction

Expansion
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Contraction-based Scan

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
match length(S) with:
case 0: return [], I
case 1: return [I], S[0]
case

B = parallel [f(S[2*i], S[2*i+1]) for i in @...|S|/2-1]
+ ([S[|S|-1]] if |S|%2 == 1 else [])

R, total = scan(f, I, B)

return tabulate(fn i => R[i/2] if i%2==0

else f(R[i/2], S[i-1]), |S|), total




Analysis of Scan

Theorem (Cost of Scan): Assuming that f can be evaluated in constant
time, scan costs 0(|S|) work and O(log |S]) span.

. Work
W) = Wn/2) + 0(n)

2 ‘W) = 0(n + n/2 + n/4 + ..) = 0(n)
n/4 - Span:
e S(n) =S(n/2)+0(1)

l.
* S(n) = 0(logn)
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Applications




MCSS Revisited

 Recall RefreshLab: Brute-force MCSS

fun mcss(S : sequence<int>) -> int:
fun sum(i : int, k : int): return reduce(plus, @, subseq(S, i, k))

sums = parallel [sum(i,k) for i in @...|S|-1 for k in @...|S|-1i]

return reduce(max, -oo, sums)

 0(n?) contiguous subsequences; reduce costs 0(n) work and
0(log n) span; so, this costs 0(n3) work and 0(log n) span

 What is redundant here?
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Improved Brute-Force MCSS

« We are computing reduce repeatedly! 0(n?) times!
« Scan can give us the sum of every prefix

fun mcss(S : sequence<int>) -> int:
splus, total = scan(plus, 0, S)
prefix_sum = splus + [total]

fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
sums = parallel [sum(i,k) for i in @...|S|-1 for k in @...|S|-1i]
return reduce(max, -oo, sums)




Analysis of Improved Brute-Force

« Each sum computation now takes 0(1) time!

- Evaluating all 0(n?) contiguous subsequences therefore costs
0(n?) work and 0(log n) span

There is still redundancy in this algorithm!

» Suppose the MCSS ends at index j-1
ik

* SUmM is prefix_sum[j] - prefix sum[i]
« We are still brute-forcing over every starting index i
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Optimized Brute-Force: Prefix Min

 SUM is prefix_sum[j] - prefix sum[i]
» To maximize this quantity, we want

min_prefix = minprefix_sum|[i]
1<j

* j.e., we want the minimum of prefix_sum in every prefix

min is an associative operation. That's just another scan!

» The optimal MCSS ending with element j is then
prefix_sum[j] - min_prefix[j]
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Optimized MCSS Example

prefix sum 0 -2 -1 4 0 -1 1 2 -3 1

min_prefix - 0 -2 -2 -4 -4 -4 -4 -4 -4

MCSS = prefix_sum[j] - min_prefix[j] =2 - (-4) = 6
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Optimal MCSS With Scan

fun mcss(S : sequence<int>) -»> int:
splus, total = scan(plus, 0, S)
prefix_sum = splus + [total]

min_prefix, _ = scan(min, oo, prefix_sum)
mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in @...]|S]|]
return reduce(max, -oo, mcss_j)

« Two scans and a reduce, each of which costs 0(n) work and
O(log n) span, so the total cost is 0(n) work and O(log n) span!

« Same bounds as our previous divide-and-conquer algorithm
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Scan With Custom
Associative Functions




Review: Associative Functions

Scan can be used to compute the prefix-"sums" of any

associative function

 Recall the two requirements for reduce and scan:

« £ must be an associative function. Formally
e f(f(x,y),z) = f(x,f(y,z)) for all values x,y,z of type T

« T must be an identity, Formally
« f(I,x) = xand f(x, I) = x forall values x of type T
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Propagating Right

» scan With clever associative functions can compute things that
sound like sequential, but in parallel!

Problem (Previous SOME): Given a sequence S of optional<T>, for

every position 0 < i < |S|, compute the rightmost SOME (i.e., non-NONE)
value that occurs before position i (i.e., the most recent one left-to-right).
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Left-to-right computation

« We could compute this sequentially by folding from left to right

fun take right some(a : optional<T>, b : optional<T>) -> optional<T>:
match b with:

case SOME(_): return b
case _: return a

But wait!!

« Therefore, we can solve Previous SOME in parallel with scan
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Associativity Proof

* Let x,y, z be values of type optional<T>.
« WTS that f(f(x,y),z) = f(x,f(y,z))

x|y 2| FOuy) | Fy,2) [ F(F(0Y),2) LFOGF(Y,2))

SOME (X ) SOME (y ) SOME (z) SOME (y ) SOME (z) SOME (z) SOME (z)
SOME (x) SOME (y) NONE SOME(y) SOME(y) SOME(y) SOME(y)
SOME (x) NONE SOME(z) SOME (x) SOME(z) SOME(z) SOME(z)

SOME (x) NONE NONE SOME (x) NONE SOME (x) SOME (x)
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Associativity Proof (continued)

* Let x,y, z be values of type optional<T>.
« WTS that f(f(x,y),z) = f(x,f(y,z))

x|y |z | FOuy) | fy,2) [ F(F(Y),2) LFOGF(Y,2))

NONE SOME (y ) SOME (z) SOME(y) SOME (z) SOME (z) SOME (z)
NONE SOME (y) NONE SOME (y) SOME (y ) SOME (y) SOME(y)
NONE NONE SOME (z) NONE SOME (z) SOME (z) SOME(z)

NONE NONE NONE NONE NONE NONE NONE
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Parallel Previous SOME

* Since its associative, we can use take right some with scan

fun previous some(S : sequence<optional<T>>) -> sequence<optional<T>>:
fun take right some(a : optional<T>, b : optional<T>) -> optional<T>:
match b with:

case SOME(_): return b
case _: return a

propagated, @ = scan(take right sum, NONE, S)
return propagated

» This gives us, in 0(n) work and O(log n) span, the previous
non-NONE optlon at every position in the sequence
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Summary

- Contraction differs from divide-and-conquer by reducing a
problem to one smaller version of itself, instead of multiple

 Contraction gives us an efficient 0(n) work and 0(log n)
implementation of scan, a highly useful sequence algorithm

« Scan can be used to compute prefix sums (or prefix
min/max) which can be used to optimize inefficient algorithms

« We can use custom associative functions with scan to solve
problems that seem inherently sequential (but aren't!)
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