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Contraction and Scan
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Learning Objectives

• Understand contraction as a technique for designing efficient 
parallel algorithms for sequences

• Understand the scan problem on sequences, and an efficient 
algorithm for it via contraction

• Practice applications of scan for precomputing prefix sums 
and prefix minimums
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Contraction
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Contraction

Reduce (Divide-and-conquer)
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Idea: Divide-and-conquer reduces a problem to multiple smaller 
problems. Contraction reduces a problem to one smaller problem.
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Contraction-based Reduce

• Divide-and-conquer is parallel by doing the recursive calls in parallel

• Since there's only one recursive call, the parallelism is now instead 
in the contraction step

5

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
  match length(S) with:
    case 0: return I
    case 1: return S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + [S[|S|-1]] if |S|%2 == 1 else []
      return reduce(f, I, B)

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
  match length(S) with:
    case 0: return I
    case 1: return S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + [S[|S|-1]] if |S|%2 == 1 else []
      return reduce(f, I, B)

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
  match length(S) with:
    case 0: return I
    case 1: return S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + [S[|S|-1]] if |S|%2 == 1 else []
      return reduce(f, I, B)

fun reduce(f : (T, T) -> T, I : T, S : sequence<T>) -> T:
  match length(S) with:
    case 0: return I
    case 1: return S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2-1]
          + [S[|S|-1]] if |S|%2 == 1 else []
      return reduce(f, I, B)



Contraction-based Reduce (Analysis)

• Work:
• 𝑊(𝑛)  =  𝑊(𝑛/2)  +  𝑂(𝑛)

• 𝑊(𝑛)  =  𝑂(𝑛 +  𝑛/2 +  𝑛/4 + … )  =  𝑂(𝑛)

• Span:
• 𝑆 𝑛 = 𝑆 𝑛/2 + 𝑂(1)

• 𝑆 𝑛 = 𝑂(log 𝑛)
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Theorem (Cost of Contraction-Based Reduce): Assuming that f can 
be evaluated in constant time, reduce implemented with contraction also 
costs 𝑂 𝑆  work and 𝑂 log 𝑆  span.
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Scan
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Scan

• Scan returns:
• A sequence containing [𝐼, 𝑓 𝐼, 𝑆 0 , 𝑓 𝑓 𝐼, 𝑆 0 , 𝑆 1 , … ]

• The total sum, equivalent to reduce(f, I, S)
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Definition (Scan): Given a sequence 𝑆, an associative function and an 
identity, scan computes the reduction of every prefix of 𝑆

scan : (f : (T, T) -> T, I : T, S : sequence<T>)

-> (sequence<T>, T)

Sounds quite sequential… but it turns out to be highly parallelizable!



Inefficient Scan

• We could use brute force (but please don't)
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fun scan(f : (T, T) -> T, I : T, S : sequence<T>) -> (sequence<T>, T):
  return tabulate(fn i => reduce(f, I, subseq(S, 0, i)), |S|), reduce(f, I, S)

• This costs 𝑂(𝑛2) work (but at least its 𝑂 log 𝑛  span!)

Exercise: Implement scan using divide-and-conquer. This 

will cost 𝑂(𝑛 log 𝑛) work and 𝑂(log 𝑛) span

• This is much more efficient, but we can still do better!



Contraction-based Scan
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Contraction-based Scan
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fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total

fun scan(f : (T,T) -> T, I : T, S : sequence<T>) -> (sequence<T>,T):
  match length(S) with:
    case 0: return [], I
    case 1: return [I], S[0]
    case _:
      B = parallel [f(S[2*i], S[2*i+1]) for i in 0...|S|/2-1]
          + ([S[|S|-1]] if |S|%2 == 1 else [])
      R, total = scan(f, I, B)
      return tabulate(fn i => R[i/2] if i%2==0
                         else f(R[i/2], S[i-1]), |S|), total



Analysis of Scan

• Work:
• 𝑊(𝑛)  =  𝑊(𝑛/2)  +  𝑂(𝑛)

• 𝑊(𝑛)  =  𝑂(𝑛 +  𝑛/2 +  𝑛/4 + … )  =  𝑂(𝑛)

• Span:
• 𝑆 𝑛 = 𝑆 𝑛/2 + 𝑂(1)

• 𝑆 𝑛 = 𝑂(log 𝑛)
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Theorem (Cost of Scan): Assuming that f can be evaluated in constant 
time, scan costs 𝑂 𝑆  work and 𝑂 log 𝑆  span.
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Applications
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MCSS Revisited

• Recall RefreshLab: Brute-force MCSS
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• 𝑂(𝑛2) contiguous subsequences; reduce costs 𝑂 𝑛  work and 
𝑂 log 𝑛  span; so, this costs 𝑂 𝑛3  work and 𝑂 log 𝑛  span

• What is redundant here?

fun mcss(S : sequence<int>) -> int:
  fun sum(i : int, k : int): return reduce(plus, 0, subseq(S, i, k))
  sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
  return reduce(max, -∞, sums)



Improved Brute-Force MCSS

• We are computing reduce repeatedly! 𝑂 𝑛2  times!

• Scan can give us the sum of every prefix
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fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]

  fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
  sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
  return reduce(max, -∞, sums)

Fact: sum(S[i…j)) = sum(S[0…j)) – sum(S[0…i)])

fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]

  fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
  sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
  return reduce(max, -∞, sums)

fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]

  fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
  sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
  return reduce(max, -∞, sums)

fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]

  fun sum(i : int, k : int): return prefix_sum[i+k] - prefix_sum[i]
  sums = parallel [sum(i,k) for i in 0...|S|-1 for k in 0...|S|-i]
  return reduce(max, -∞, sums)



Analysis of Improved Brute-Force

• Each sum computation now takes 𝑂 1  time!

• Evaluating all 𝑂(𝑛2) contiguous subsequences therefore costs 
𝑂(𝑛2) work and 𝑂 log 𝑛  span
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There is still redundancy in this algorithm!

• Suppose the MCSS ends at index j-1

ji

• Sum is prefix_sum[j] – prefix_sum[i]

• We are still brute-forcing over every starting index i



Optimized Brute-Force: Prefix Min
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• Sum is prefix_sum[j] – prefix_sum[i]

• To maximize this quantity, we want

min_prefix = min
𝑖<𝑗

prefix_sum[i]

• i.e., we want the minimum of prefix_sum in every prefix

min is an associative operation. That's just another scan!

• The optimal MCSS ending with element j is then

prefix_sum[j] − min_prefix[j]



Optimized MCSS Example

-2 1 -3 4 -1 2 1 -5 4
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S

prefix_sum 0 -2 -1 -4 0 -1 1 2 -3 10 -2 -1 -4 0 -1 1 2 -3 1

min_prefix -∞ 0 -2 -2 -4 -4 -4 -4 -4 -4

MCSS = prefix_sum[j] − min_prefix[j] = 2 – (-4) = 6

-∞ 0 -2 -2 -4 -4 -4 -4 -4 -4



Optimal MCSS With Scan

• Two scans and a reduce, each of which costs 𝑂 𝑛  work and 
𝑂 log 𝑛  span, so the total cost is 𝑂 𝑛  work and 𝑂 log 𝑛  span!

• Same bounds as our previous divide-and-conquer algorithm
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fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]
  min_prefix, _ = scan(min, ∞, prefix_sum)
  mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
  return reduce(max, -∞, mcss_j)

fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]
  min_prefix, _ = scan(min, ∞, prefix_sum)
  mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
  return reduce(max, -∞, mcss_j)

fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]
  min_prefix, _ = scan(min, ∞, prefix_sum)
  mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
  return reduce(max, -∞, mcss_j)

fun mcss(S : sequence<int>) -> int:
  splus, total = scan(plus, 0, S)
  prefix_sum = splus + [total]
  min_prefix, _ = scan(min, ∞, prefix_sum)
  mcss_j = parallel [prefix_sum[j] - min_prefix[j] for j in 0...|S|]
  return reduce(max, -∞, mcss_j)



Scan With Custom 
Associative Functions
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Review: Associative Functions
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• Recall the two requirements for reduce and scan:
• f must be an associative function. Formally

• f(f(x,y),z) = f(x,f(y,z)) for all values x,y,z of type T

• I must be an identity, Formally
• f(I,x) = x and f(x, I) = x  for all values x of type T

Scan can be used to compute the prefix-"sums" of any 
associative function



N N 5 5 3 3 3 2 2 3

Propagating Right

• scan with clever associative functions can compute things that 
sound like sequential, but in parallel!
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Problem (Previous SOME): Given a sequence 𝑆 of optional<T>, for 

every position 0 ≤ 𝑖 < 𝑆 , compute the rightmost SOME (i.e., non-NONE) 
value that occurs before position 𝑖 (i.e., the most recent one left-to-right).

N 5 N 3 N N 2 N 3 1



Left-to-right computation

• We could compute this sequentially by folding from left to right
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fun take_right_some(a : optional<T>, b : optional<T>) -> optional<T>:
  match b with:
    case SOME(_): return b
    case _: return a

But wait!!

Theorem (Associativity): take_right_some is associative.

• Therefore, we can solve Previous SOME in parallel with scan



Associativity Proof

• Let x,y,z be values of type optional<T>.

• WTS that f(f(x,y),z) = f(x,f(y,z))
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Theorem (Associativity): take_right_some is associative.

x y z f(x,y) f(y,z) f(f(x,y),z) f(x,f(y,z))

SOME(x) SOME(y) SOME(z) SOME(y) SOME(z) SOME(z) SOME(z)

SOME(x) SOME(y) NONE SOME(y) SOME(y) SOME(y) SOME(y)

SOME(x) NONE SOME(z) SOME(x) SOME(z) SOME(z) SOME(z)

SOME(x) NONE NONE SOME(x) NONE SOME(x) SOME(x)



Associativity Proof (continued)

• Let x,y,z be values of type optional<T>.

• WTS that f(f(x,y),z) = f(x,f(y,z))

25

Theorem (Associativity): take_right_some is associative.

x y z f(x,y) f(y,z) f(f(x,y),z) f(x,f(y,z))

NONE SOME(y) SOME(z) SOME(y) SOME(z) SOME(z) SOME(z)

NONE SOME(y) NONE SOME(y) SOME(y) SOME(y) SOME(y)

NONE NONE SOME(z) NONE SOME(z) SOME(z) SOME(z)

NONE NONE NONE NONE NONE NONE NONE



Parallel Previous SOME

• Since its associative, we can use take_right_some with scan

26

fun previous_some(S : sequence<optional<T>>) -> sequence<optional<T>>:
  fun take_right_some(a : optional<T>, b : optional<T>) -> optional<T>:
    match b with:
      case SOME(_): return b
      case _: return a
  propagated, _ = scan(take_right_sum, NONE, S)
  return propagated

• This gives us, in 𝑂 𝑛  work and 𝑂 log 𝑛  span, the previous 
non-NONE option at every position in the sequence



Summary

• Contraction differs from divide-and-conquer by reducing a 
problem to one smaller version of itself, instead of multiple

• Contraction gives us an efficient 𝑂 𝑛  work and 𝑂 log 𝑛  
implementation of scan, a highly useful sequence algorithm

• Scan can be used to compute prefix sums (or prefix 
min/max) which can be used to optimize inefficient algorithms

• We can use custom associative functions with scan to solve 
problems that seem inherently sequential (but aren't!)
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