Asymptotic Analysis and Recurrences

15-210 — Parallel and Sequential Data-structures and Algorithms

1/33

Asymptotic Analysis
Recurrences

Tree Method

Brick Method

Substitution Method

2/33

Asymptotic Analysis

3/33

Asymptotic Analysis: Motivation

Used throughout the curriculum:
m 15-122 Principles of Imperative Computation
m 15-251 Great Theoretical Ideas in Computer Science
m 15-150 Principles of Functional Programming
m 15-451 Algorithms

W(n) = 7n° 4+ 3nlogn + 11y/n + +2.72342142

log n

4/33

Asymptotic Analysis: Motivation

Used throughout the curriculum:
m 15-122 Principles of Imperative Computation
m 15-251 Great Theoretical Ideas in Computer Science
m 15-150 Principles of Functional Programming
m 15-451 Algorithms

W(n) = 7n° 4+ 3nlogn + 11y/n + +2.72342142 € O(n?)

log n

4/33

Asymptotic Analysis: Motivation

Used throughout the curriculum:
m 15-122 Principles of Imperative Computation
m 15-251 Great Theoretical Ideas in Computer Science
m 15-150 Principles of Functional Programming
m 15-451 Algorithms

W(n) = 7n° 4+ 3nlogn + 11y/n + +2.72342142 € O(n?)

log n
Asymptotic analysis is a useful abstraction:
m Avoid details of the machine/model /compiler
m Avoid details of the algorithm
m Gives a way to compare algorithms in theory

we care about cost with large inputs

4/33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>o — R>o we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

5/33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>o — R we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c- f(n) for all n > ng

5/33

Asymptotic Analysis: Dominate

Definition
For two functions f, g : R>g — Rxq we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < ¢ - f(n) for all n > ng

f(n) g(n)
2n n
n 2n
nlog,n n
on 21.1n

6/33

Asymptotic Analysis: Dominate

Definition

For two functions f, g : R>g — Rxq we say f(n) asymptotically dominates g(n)

if there exists positive constants ¢ and ng such that g(n) < ¢ - f(n) for all n > ng

f(n) g(n) c ng
2n n 10
n 2n 20
nlog,n n 12
on 21.1n X X

6/33

Asymptotic Analysis: Big-O, Big-©, and Big-{2

Definition
For two functions f, g : R>o — Rxq we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c-f(n) for all n > ng

O(f(n)) = {g(n) s.t. f(n) asymptotically dominates g(n)}
g(n) s.t. g(n) asymptotically dominates f(n)}

©)
—~
)
—~
S
~
~
I
~=

7/33

Asymptotic Analysis: Big-O, Big-©, and Big-{2

Definition
For two functions f, g : R>o — Rxq we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c-f(n) for all n > ng

O(f(n)) = {g(n) s.t. f(n) asymptotically dominates g(n)}
Q(f(n)) = {g(n) s.t. g(n) asymptotically dominates f(n)}

O((n)) = O(f(n)) N Q(f(n))

7/33

Asymptotic Analysis: Big-O, Big-©, and Big-{2

Definition
For two functions f, g : R>o — Rxq we say f(n) asymptotically dominates g(n)
if there exists positive constants ¢ and ng such that g(n) < c-f(n) for all n > ng

O(f(n)) = {g(n) s.t. f(n) asymptotically dominates g(n)}
g(n)

@(f(n))ZO(f(")) Q(f(n))

asymptotically dominates f(n)}

7/33

Asymptotic Analysis: Conventions

m f(n) = O(n?)
m f(n)is O(n?)
m correct form: f(n) € O(n?)

m f(n) = g(n) +O(n)

m correct form: f(n) € g(n) + O(n)
m or equivalently f(n) — g(n) € O(n)

m O(n) = O(n?)
m correct form: O(n) C O(n?)

8/33

Proof that log(n!) = O(nlog n)

9/33

Limit Theorem for Little-o and Little-w

For positive functions f and g, the following are equivalent:

f(n) = o(g(n))

g(n) = w(f(n)
L f(n)
nll—mog(n) =0

This is usually the easiest way to prove that one function is Little-o of another one.

10 /33

Uses of the Limit Theorem (Exercises)

Use this theorem and I'Hépital’s rule to prove the following results:

nk =o(a") forany k and any o > 1

In words this means: Any polynomial, no matter how big, is eventually dwarfed by any
expontially growing function.

logn=o(n”) forany p>0

l.e. logs grow more slowly than any polynomial, even those of tiny degree.

11 /33

Recurrences

12 /33

Recurrences: Introduction

Recursive program with numeric values

Recurrences:
m base case(s) & recursive case(s)
m convenient for modeling costs
m derived from a recursive algorithm: abstract away details
m goal: find a closed form solution, at least asymptotically

13 /33

Recurrences: Introduction

Recursive program with numeric values

Recurrences:
m base case(s) & recursive case(s)
m convenient for modeling costs
m derived from a recursive algorithm: abstract away details
m goal: find a closed form solution, at least asymptotically

Three methods to solve recurrences:
m Tree method
m Brick method
m Substitution method

13 /33

Recurrences: Examples

Fln) = n ifn<l1
| F(n—1)+ F(n—2) otherwise

14 / 33

Recurrences: Examples

_ 9" =(1=p)"

Lo fn if n <1 N V5
(n) = F(n—1)+ F(n—2) otherwise V541
with ¢ = 5

14 / 33

Recurrences: Examples

_ 9" =(1=p)"

Lo fn if n <1 N V5
(n) = F(n—1)+ F(n—2) otherwise V541
with ¢ = 5

€ O(¢")

14 / 33

Recurrences: Examples

_ ¢ =(1=p)"
n if n<1 V5
F(n) = .
F(n—1)+ F(n—2) otherwise
5+1
with ¢ = 5
€ O(¢")
Recurrence for mergesort:
~if (n < 1) then ¢
W(n) = else 2W(5) + Winerge(n) + 2 € O(nlog, n)

14 / 33

Recurrences: Simplifications

First off all, since we're only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cp.

15/ 33

Recurrences: Simplifications

First off all, since we're only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cp.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size [n/2] and the other
of size | n/2]. But when we wrote the recurrence we just expressed this as 2W (3).

15/ 33

Recurrences: Simplifications

First off all, since we're only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cp.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size [n/2] and the other
of size | n/2]. But when we wrote the recurrence we just expressed this as 2W (3).

We assert here without proof that this will not affect the asymptotic correceness of our
analysis. Suffice it to say that this stems from the fact that for large n this change is
miniscule, and that the realm of large n is where the preponderence of the recurrence
is being computed.

15/ 33

Tree Method

16 / 33

Tree Method: Unfold Recurrence, Sum by Level

n

W(n) = 2w (2> +O(n)

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

n

W(n) = 2w (2) +0(n)

= W(2>+W(2>—|—c1-n+c2

VAN
ﬂ/ \Q ﬂ/ \Q
A

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

n

W(n) = 2w (3)+0(n)

W)W e

/n\ cn—+ ¢
3 3 2(c15 + @) = an+2¢
/\ /N
a a a a 4af +o)=an+tic
FARVARNARVAY

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

n

W(n) = 2w (2) +0(n)

W)W e

/ n \ cn—+ o
3 3 2a5+) =an+2c
log / N\ / N\
n n n n 4(af+c)=an+ibe

AN

17 / 33

Tree Method: Unfold Recurrence, Sum by Level
n

W(n) = 2w (2) +0(n)

W)W e

N
3 3 2a5+) =an+2c
S VANV
a a 2 o 4(af+c)=an+ibe
FARTARNARNAY

total cost is cinlog, n + ca(n — 1) + cpn € O(nlog, n)

17 / 33

Tree Method: Another Example

2

/n, m\ cost(Ly) = n

2 2 cost(Ly) =2(2)* =
log, n ﬂ/ \Q ﬂ/ \ﬂ
TANARARYAY

total cost is N> + 2 + % 4 ... < 2n% + ¢ - n € O(n?)

cost(Ly) = 4(2)* =

cost(Ly) =cp-n

ISES

18 /33

Tree Method: Unfold Recurrence, Sum by Level

W(n) = 2W(g) +/n

19 /33

Tree Method: Unfold Recurrence, Sum by Level
W(n) = 2W(g) +/n

N,
S ANAN

Cl\/ﬁ—i‘ C
2¢14/n/2 4 2¢,

4 4 4 4 4C1\/n_/4+4C2
FAREARNAREAY ey 73 5 26

19 /33

Tree Method: Unfold Recurrence, Sum by Level
W(n) = 2W(g) +/n

N,
S ANAN

Cl\/ﬁ—i‘ C
2¢14/n/2 4 2¢,

4 4 4 4 4C1\/n_/4+4C2
FAREARNAREAY ey 73 5 26

total cost is O(n)

19 /33

Brick Method

20 /33

Brick Method (An extension of the Tree Method): Introduction
Consider geometric series

S={(l,a,a%...,a") with v # 1

>

xES

21/ 33

Brick Method (An extension of the Tree Method): Introduction

Consider geometric series

(0
Fi >1 < "
ora>1Y x (a_l)a

X€ES

1
Fi 1
ora <1 x< (12

XES

21/ 33

Brick Method: Introduction

Consider recurrence tree, for any node v
m C(v) = cost of v
m D(v) = set of children of v
Root dominated:
m C(v) = ad,epn) C(u) forall v with a > 1

m total cost is (ﬁ) C(root) € O(C(root))

22 /33

Brick Method: Introduction

Consider recurrence tree, for any node v
m C(v) = cost of v
m D(v) = set of children of v
Leaf dominated:
m aC(v) <3 ,ep(v) C(u) for all v with o> 1
m total cost is the cost of leaves € O(C(leaves))

23 /33

Brick Method: Root Dominated Examples

W(n) = W(3) + W(3) + n’
m cost root: n?
2

- . (n)2 2 _
m cost children: () +(5)° =%
m cost root > 2 cost children = root dominated: O(n?)

m applies at all nodes

24 / 33

Brick Method: Root Dominated Examples

W(n) = W(3) + W(2) +
m cost root: n?
2

m cost children: (2)°+(2)° =%

m cost root > 2 cost children = root dominated: O(n?)

m applies at all nodes

W(n) = W(3)+ W)+ n?

m cost root: n?

. 2 2 2
m cost children: (2)%+ (32)> =& + &2 = 21

m cost root > 2 cost children = root dominated: O(n?)

24 / 33

Brick Method: Root Dominated Proof

S={(l,a,a%...,a") with a # 1

i _ 1 1
ZX:a—, ZX<lethO<O{<l

a—1
x€ES x€ES

Theorem
If C(v) > a},ep Cu) for all v with a > 1, then the total cost is

O(C(root)).

25 /33

Brick Method: Root Dominated Proof

S={(l,a,a%...,a") with a # 1
a™t—1 1]
ZX:?, ZX<lethO<O{<l

(e
XES xeS

Theorem

If C(v) > a},ep Cu) for all v with a > 1, then the total cost is
O(C(root)).

Proof.

total C = C(Lo) + C(L1) +--- + C(Lq)
= C(L)(1+1/a+---+1/a%)

< C(Lo) (1 _11/a) = C(Lo) (ai 1) € O(C(Lo))

35]/ 33

Brick Method: Leaf Dominated Examples

W(n) = W(2) + W(Z) + v
m cost root: /n
m cost children: \/g—k \/g = \/5\/5
m cost of leaves: 21°82" = p
m « cost node < cost children = leaf dominated: O(n)

26 / 33

Brick Method: Leaf Dominated Examples

W(n) = W(5)+ W(3)+vn
m cost root: \/n
m cost children: \/g—k \/g = \/5\/5
m cost of leaves: 21°82" = p
m « cost node < cost children = leaf dominated: O(n)

W(n) = W(3) +WE) + W(3)+vn

m cost node: \/n

S dren: _ 3
m cost children: /7 + /3 + /5 = v

m cost of leaves: 3°&2" = plog23

m « cost node < cost children = leaf dominated: O(n'°e23)

26 / 33

Brick Method: Leaf Dominated Example

W(n) = W(3)+ W(3)+ W(3)++vn
m cost node: \/n

Hdren: _ 3
m cost children: /7 + /3 + /5 = v

m cost of leaves: 3/°827 = plog23

m « cost node < cost children = leaf dominated: O(n'°e23)

27 / 33

Brick Method: Leaf Dominated Proof

S={(l,a,a%...,a") with a # 1

i _ 1 1
ZX:a—, ZX<lethO<O{<l

a—1
x€ES x€ES

Theorem
IfC(v)< L. > uen(v) C(u) for all v with a > 1, then the total cost is

O(C(leaves)).

28 /33

Brick Method: Leaf Dominated Proof

S={(l,a,a%...,a") with a # 1
1 1
Tl e b Gio<a<n
a—1 11—«
x€eS xeS

Theorem
IfC(v)<i. > uen(v) C(u) for all v with a > 1, then the total cost is

(07

O(C(leaves)).

Proof.
total cost = C(Lo) + C(L1)+ -+ C(Lq)
< 1/a? - C(Lg) +1/a9t- C(Ly) + -+ + C(Ly)
= C(Ly)(1+1/a+---+1/a%)
<

C(Ly) (ﬁ) € O(C(Ly))

28 /33

Brick Method: Balanced

The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W(n) =2W(3) + O(n)
ery /N /N
FAREARVARNAS

20 /33

Brick Method: Balanced

The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W(n) =2W(3) + O(n)
ery /N /N
FAREARVARNAS

total cost is

20 /33

Brick Method: Balanced

The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W(n) = 2W(3) + O(n)

n O(n)
O\,
2 2 O(n)
log; 1 / N\ / N\
i i 1 i O(n)
A AR ARNAY o)

total cost is log, n- O(n) = O(nlog, n)
29 / 33

Brick Method “Masterform”

n

W(n):a-w(b)+f(n)

f(n) compare: f(n):a-f (%)
/ \ > root dominated
f(3) f(3) < leaf dominated
%/—/
a copies = balanced

leaves = 3'%8v" = plogs2

30 /33

Brick Method “Masterform”

n

W(n):a-w(b)+f(n)

f(n) compare: f(n):a-f (%)
/ \ > root dominated
f(3) f(3) < leaf dominated
%/—/
a copies = balanced

leaves = 3'%8v" = plogs2

The techniques described in this lecture allow you to derive the result of the “Master
Theorem” whenever necessary.

30 /33

Substitution Method

31/ 33

Substitution Method: “Guess and Check”

Computing can be tricky if tree is unbalanced
= W(n) = W(2)+ W(2)+ Vn

32/33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2) + W(2) + V7
m This recurrence is leaf-dominated as \/n < \/g—k \/g

m How many leaf nodes?

32/33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2) + W(2) + V7
m This recurrence is leaf-dominated as \/n < \/g—k \/g
m How many leaf nodes? New recurrence: L(n) = L(5) + L(%)

32/33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2) + W(2) + V7
m This recurrence is leaf-dominated as \/n < \/g—k \/g
= How many leaf nodes? New recurrence: L(n) = L(5) + L(§)

The substitution method consists of two steps
m (educated) guess: good luck... intuition

m check: proof by induction

Our guess: L(n) = n® for some b
m base case: L(1)=1=1°

® induction: nf = (g)b + (g)b

32/33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2) + W(2) + V7
m This recurrence is leaf-dominated as \/n < \/g—k \/g
= How many leaf nodes? New recurrence: L(n) = L(5) + L(§)

The substitution method consists of two steps
m (educated) guess: good luck... intuition

m check: proof by induction

Our guess: L(n) = n® for some b
m base case: L(1)=1=1"
= induction: n? = (g)b + (%)b

m after simplification (dividing by n?): 1 = (%)b + (%)b

32/33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced
= W(n) = W(2) + W(2) + V7
m This recurrence is leaf-dominated as \/n < \/g—k \/g
= How many leaf nodes? New recurrence: L(n) = L(5) + L(§)

The substitution method consists of two steps
m (educated) guess: good luck... intuition

m check: proof by induction
Our guess: L(n) = n® for some b
m base case: L(1)=1=1°
m induction: n? = (g)b + (%)b
m after simplification (dividing by n?): 1 = (%)b + (%)b
m solution: b~ .788, so L(n) =~ n'"® and W(n) € O(n'"88)

32/33

Asymptotic Analysis
Recurrences

Tree Method

Brick Method

Substitution Method

33 /33

	Asymptotic Analysis
	Recurrences
	Tree Method
	Brick Method
	Substitution Method

