
Asymptotic Analysis and Recurrences

15-210 – Parallel and Sequential Data-structures and Algorithms

1 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

2 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

3 / 33

Asymptotic Analysis: Motivation

Used throughout the curriculum:

15-122 Principles of Imperative Computation

15-251 Great Theoretical Ideas in Computer Science

15-150 Principles of Functional Programming

15-451 Algorithms

W (n) = 7n2 + 3n log n + 11
√
n +

5

log n
+ 2.72342142

∈ O(n2)

Asymptotic analysis is a useful abstraction:

Avoid details of the machine/model/compiler

Avoid details of the algorithm

Gives a way to compare algorithms in theory

we care about cost with large inputs

4 / 33

Asymptotic Analysis: Motivation

Used throughout the curriculum:

15-122 Principles of Imperative Computation

15-251 Great Theoretical Ideas in Computer Science

15-150 Principles of Functional Programming

15-451 Algorithms

W (n) = 7n2 + 3n log n + 11
√
n +

5

log n
+ 2.72342142 ∈ O(n2)

Asymptotic analysis is a useful abstraction:

Avoid details of the machine/model/compiler

Avoid details of the algorithm

Gives a way to compare algorithms in theory

we care about cost with large inputs

4 / 33

Asymptotic Analysis: Motivation

Used throughout the curriculum:

15-122 Principles of Imperative Computation

15-251 Great Theoretical Ideas in Computer Science

15-150 Principles of Functional Programming

15-451 Algorithms

W (n) = 7n2 + 3n log n + 11
√
n +

5

log n
+ 2.72342142 ∈ O(n2)

Asymptotic analysis is a useful abstraction:

Avoid details of the machine/model/compiler

Avoid details of the algorithm

Gives a way to compare algorithms in theory

we care about cost with large inputs

4 / 33

Asymptotic Analysis: Dominate

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

0 1

1

2

2

g(n)
f (n)

c = 1
n0 = 2

5 / 33

Asymptotic Analysis: Dominate

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

0 1

1

2

2

g(n)
f (n)

c = 1
n0 = 2

c = 2
n0 = 1

5 / 33

Asymptotic Analysis: Dominate

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

f (n) g(n)

2n n
n 2n

n log2 n n
2n 21.1n

6 / 33

Asymptotic Analysis: Dominate

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

f (n) g(n)

2n n
n 2n

n log2 n n
2n 21.1n

c n0
1 0
2 0
1 2
× ×

6 / 33

Asymptotic Analysis: Big-O, Big-Θ, and Big-Ω

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

O(f (n)) = {g(n) s.t. f (n) asymptotically dominates g(n)}
Ω(f (n)) = {g(n) s.t. g(n) asymptotically dominates f (n)}
Θ(f (n)) =

O(f (n)) ∩ Ω(f (n))

o(f (n)) = O(f (n)) \Θ(f (n))

ω(f (n)) = Ω(f (n)) \Θ(f (n))

7 / 33

Asymptotic Analysis: Big-O, Big-Θ, and Big-Ω

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

O(f (n)) = {g(n) s.t. f (n) asymptotically dominates g(n)}
Ω(f (n)) = {g(n) s.t. g(n) asymptotically dominates f (n)}
Θ(f (n)) = O(f (n)) ∩ Ω(f (n))

o(f (n)) = O(f (n)) \Θ(f (n))

ω(f (n)) = Ω(f (n)) \Θ(f (n))

7 / 33

Asymptotic Analysis: Big-O, Big-Θ, and Big-Ω

Definition
For two functions f , g : R≥0 → R≥0 we say f (n) asymptotically dominates g(n)
if there exists positive constants c and n0 such that g(n) ≤ c · f (n) for all n ≥ n0

O(f (n)) = {g(n) s.t. f (n) asymptotically dominates g(n)}
Ω(f (n)) = {g(n) s.t. g(n) asymptotically dominates f (n)}
Θ(f (n)) = O(f (n)) ∩ Ω(f (n))

o(f (n)) = O(f (n)) \Θ(f (n))

ω(f (n)) = Ω(f (n)) \Θ(f (n))

7 / 33

Asymptotic Analysis: Conventions

f (n) = O(n2)

f (n) is O(n2)

correct form: f (n) ∈ O(n2)

f (n) = g(n) +O(n)

correct form: f (n) ∈ g(n) +O(n)

or equivalently f (n)− g(n) ∈ O(n)

O(n) = O(n2)

correct form: O(n) ⊆ O(n2)

8 / 33

Proof that log(n!) = O(n log n)

9 / 33

Limit Theorem for Little-o and Little-ω

For positive functions f and g , the following are equivalent:

f (n) = o(g(n))

g(n) = ω(f (n))

lim
n→∞

f (n)

g(n)
= 0

This is usually the easiest way to prove that one function is Little-o of another one.

10 / 33

Uses of the Limit Theorem (Exercises)

Use this theorem and l’Hôpital’s rule to prove the following results:

nk = o(αn) for any k and any α > 1

In words this means: Any polynomial, no matter how big, is eventually dwarfed by any
expontially growing function.

log n = o(np) for any p > 0

I.e. logs grow more slowly than any polynomial, even those of tiny degree.

11 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

12 / 33

Recurrences: Introduction

Recursive program with numeric values

Recurrences:

base case(s) & recursive case(s)

convenient for modeling costs

derived from a recursive algorithm: abstract away details

goal: find a closed form solution, at least asymptotically

Three methods to solve recurrences:

Tree method

Brick method

Substitution method

13 / 33

Recurrences: Introduction

Recursive program with numeric values

Recurrences:

base case(s) & recursive case(s)

convenient for modeling costs

derived from a recursive algorithm: abstract away details

goal: find a closed form solution, at least asymptotically

Three methods to solve recurrences:

Tree method

Brick method

Substitution method

13 / 33

Recurrences: Examples

F (n) =

{
n if n ≤ 1

F (n − 1) + F (n − 2) otherwise

=
φn−(1−φ)n√

5

with φ =

√
5+1
2

∈ Θ(φn)

Recurrence for mergesort:

W (n) =
if (n ≤ 1) then c1
else 2W (n

2
) +Wmerge(n) + c2

∈ O(n log2 n)

14 / 33

Recurrences: Examples

F (n) =

{
n if n ≤ 1

F (n − 1) + F (n − 2) otherwise

=
φn−(1−φ)n√

5

with φ =

√
5+1
2

∈ Θ(φn)

Recurrence for mergesort:

W (n) =
if (n ≤ 1) then c1
else 2W (n

2
) +Wmerge(n) + c2

∈ O(n log2 n)

14 / 33

Recurrences: Examples

F (n) =

{
n if n ≤ 1

F (n − 1) + F (n − 2) otherwise

=
φn−(1−φ)n√

5

with φ =

√
5+1
2

∈ Θ(φn)

Recurrence for mergesort:

W (n) =
if (n ≤ 1) then c1
else 2W (n

2
) +Wmerge(n) + c2

∈ O(n log2 n)

14 / 33

Recurrences: Examples

F (n) =

{
n if n ≤ 1

F (n − 1) + F (n − 2) otherwise

=
φn−(1−φ)n√

5

with φ =

√
5+1
2

∈ Θ(φn)

Recurrence for mergesort:

W (n) =
if (n ≤ 1) then c1
else 2W (n

2
) +Wmerge(n) + c2

∈ O(n log2 n)

14 / 33

Recurrences: Simplifications

First off all, since we’re only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cb.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size ⌈n/2⌉ and the other
of size ⌊n/2⌋. But when we wrote the recurrence we just expressed this as 2W

(
n
2

)
.

We assert here without proof that this will not affect the asymptotic correceness of our
analysis. Suffice it to say that this stems from the fact that for large n this change is
miniscule, and that the realm of large n is where the preponderence of the recurrence
is being computed.

15 / 33

Recurrences: Simplifications

First off all, since we’re only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cb.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size ⌈n/2⌉ and the other
of size ⌊n/2⌋. But when we wrote the recurrence we just expressed this as 2W

(
n
2

)
.

We assert here without proof that this will not affect the asymptotic correceness of our
analysis. Suffice it to say that this stems from the fact that for large n this change is
miniscule, and that the realm of large n is where the preponderence of the recurrence
is being computed.

15 / 33

Recurrences: Simplifications

First off all, since we’re only doing asymptotic analysis we will assume that the value of
the base case is is a constant denoted cb.

Secondly many of the recurrences we want to solve involve integer parameters. For
example, in the case of mergesort, we recurse on one part of size ⌈n/2⌉ and the other
of size ⌊n/2⌋. But when we wrote the recurrence we just expressed this as 2W

(
n
2

)
.

We assert here without proof that this will not affect the asymptotic correceness of our
analysis. Suffice it to say that this stems from the fact that for large n this change is
miniscule, and that the realm of large n is where the preponderence of the recurrence
is being computed.

15 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

16 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W
(n
2

)
+O(n)

= W
(n
2

)
+W

(n
2

)
+ c1 · n + c2

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

c1n + c2

2(c1
n
2
+ c2) = c1n + 2c2

4(c1
n
4
+ c2) = c1n + 4c2

cb · n

total cost is c1n log2 n + c2(n − 1) + cbn ∈ O(n log2 n)

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W
(n
2

)
+O(n)

= W
(n
2

)
+W

(n
2

)
+ c1 · n + c2

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

c1n + c2

2(c1
n
2
+ c2) = c1n + 2c2

4(c1
n
4
+ c2) = c1n + 4c2

cb · n

total cost is c1n log2 n + c2(n − 1) + cbn ∈ O(n log2 n)

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W
(n
2

)
+O(n)

= W
(n
2

)
+W

(n
2

)
+ c1 · n + c2

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

c1n + c2

2(c1
n
2
+ c2) = c1n + 2c2

4(c1
n
4
+ c2) = c1n + 4c2

cb · n

total cost is c1n log2 n + c2(n − 1) + cbn ∈ O(n log2 n)

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W
(n
2

)
+O(n)

= W
(n
2

)
+W

(n
2

)
+ c1 · n + c2

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

c1n + c2

2(c1
n
2
+ c2) = c1n + 2c2

4(c1
n
4
+ c2) = c1n + 4c2

cb · n

total cost is c1n log2 n + c2(n − 1) + cbn ∈ O(n log2 n)

17 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W
(n
2

)
+O(n)

= W
(n
2

)
+W

(n
2

)
+ c1 · n + c2

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

c1n + c2

2(c1
n
2
+ c2) = c1n + 2c2

4(c1
n
4
+ c2) = c1n + 4c2

cb · n

total cost is c1n log2 n + c2(n − 1) + cbn ∈ O(n log2 n)
17 / 33

Tree Method: Another Example

W (n) = W
(n
2

)
+W

(n
2

)
+ n2

n,m

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

cost(L0) = n2

cost(L1) = 2(n
2
)2 = n2

2

cost(L2) = 4(n
4
)2 = n2

4

cost(Ld) = cb · n

total cost is n2 + n2

2
+ n2

4
+ · · · < 2n2 + cb · n ∈ O(n2)

18 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W (
n

2
) +

√
n

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

c1
√
n + c2

2c1
√

n/2 + 2c2

4c1
√

n/4 + 4c2

2lg nc1
√

n/2lg n + 2lg nc2

total cost is O(n)

19 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W (
n

2
) +

√
n

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

c1
√
n + c2

2c1
√

n/2 + 2c2

4c1
√

n/4 + 4c2

2lg nc1
√

n/2lg n + 2lg nc2

total cost is O(n)

19 / 33

Tree Method: Unfold Recurrence, Sum by Level

W (n) = 2W (
n

2
) +

√
n

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

c1
√
n + c2

2c1
√

n/2 + 2c2

4c1
√

n/4 + 4c2

2lg nc1
√

n/2lg n + 2lg nc2

total cost is O(n)

19 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

20 / 33

Brick Method (An extension of the Tree Method): Introduction

Consider geometric series

S = ⟨1, α, α2, . . . , αn⟩ with α ̸= 1∑
x∈S

x =

αn+1 − 1

α− 1

For α > 1,
∑
x∈S

x <

(
α

α− 1

)
αn

For α < 1,
∑
x∈S

x <

(
1

1− α

)

21 / 33

Brick Method (An extension of the Tree Method): Introduction

Consider geometric series

S = ⟨1, α, α2, . . . , αn⟩ with α ̸= 1∑
x∈S

x =
αn+1 − 1

α− 1

For α > 1,
∑
x∈S

x <

(
α

α− 1

)
αn

For α < 1,
∑
x∈S

x <

(
1

1− α

)

21 / 33

Brick Method: Introduction

Consider recurrence tree, for any node v

C (v) = cost of v

D(v) = set of children of v

Root dominated:

C (v) ≥ α
∑

u∈D(v) C (u) for all v with α > 1

total cost is
(

α
α−1

)
C (root) ∈ O(C (root))

22 / 33

Brick Method: Introduction

Consider recurrence tree, for any node v

C (v) = cost of v

D(v) = set of children of v

Leaf dominated:

αC (v) ≤
∑

u∈D(v) C (u) for all v with α > 1

total cost is the cost of leaves ∈ O(C (leaves))

23 / 33

Brick Method: Root Dominated Examples

W (n) = W (n
2
) +W (n

2
) + n2

cost root: n2

cost children: (n
2
)2 + (n

2
)2 = n2

2

cost root ≥ 2 cost children⇒ root dominated: O(n2)

applies at all nodes

W (n) = W (n
3
) +W (5n

6
) + n2

cost root: n2

cost children: (n
3
)2 + (5n

6
)2 = n2

9
+ 25n2

36
= 29n2

36

cost root ≥ 2 cost children⇒ root dominated: O(n2)

24 / 33

Brick Method: Root Dominated Examples

W (n) = W (n
2
) +W (n

2
) + n2

cost root: n2

cost children: (n
2
)2 + (n

2
)2 = n2

2

cost root ≥ 2 cost children⇒ root dominated: O(n2)

applies at all nodes

W (n) = W (n
3
) +W (5n

6
) + n2

cost root: n2

cost children: (n
3
)2 + (5n

6
)2 = n2

9
+ 25n2

36
= 29n2

36

cost root ≥ 2 cost children⇒ root dominated: O(n2)

24 / 33

Brick Method: Root Dominated Proof

S = ⟨1, α, α2, . . . , αn⟩ with α ̸= 1∑
x∈S

x =
αn+1 − 1

α− 1
,

∑
x∈S

x <
1

1− α
with 0 < α < 1

Theorem
If C (v) ≥ α

∑
u∈D(v) C (u) for all v with α > 1, then the total cost is

O(C (root)).

Proof.

total C = C (L0) + C (L1) + · · ·+ C (Ld)

= C (L0)(1 + 1/α + · · ·+ 1/αd)

≤ C (L0)

(
1

1− 1/α

)
= C (L0)

(
α

α− 1

)
∈ O(C (L0))

25 / 33

Brick Method: Root Dominated Proof

S = ⟨1, α, α2, . . . , αn⟩ with α ̸= 1∑
x∈S

x =
αn+1 − 1

α− 1
,

∑
x∈S

x <
1

1− α
with 0 < α < 1

Theorem
If C (v) ≥ α

∑
u∈D(v) C (u) for all v with α > 1, then the total cost is

O(C (root)).

Proof.

total C = C (L0) + C (L1) + · · ·+ C (Ld)

= C (L0)(1 + 1/α + · · ·+ 1/αd)

≤ C (L0)

(
1

1− 1/α

)
= C (L0)

(
α

α− 1

)
∈ O(C (L0))

25 / 33

Brick Method: Leaf Dominated Examples

W (n) = W (n
2
) +W (n

2
) +

√
n

cost root:
√
n

cost children:
√

n
2
+
√

n
2
=

√
2
√
n

cost of leaves: 2log2 n = n

α cost node ≤ cost children⇒ leaf dominated: O(n)

W (n) = W (n
2
) +W (n

2
) +W (n

2
) +

√
n

cost node:
√
n

cost children:
√

n
2
+
√

n
2
+
√

n
2
= 3√

2

√
n

cost of leaves: 3log2 n = nlog2 3

α cost node ≤ cost children⇒ leaf dominated: O(nlog2 3)

26 / 33

Brick Method: Leaf Dominated Examples

W (n) = W (n
2
) +W (n

2
) +

√
n

cost root:
√
n

cost children:
√

n
2
+
√

n
2
=

√
2
√
n

cost of leaves: 2log2 n = n

α cost node ≤ cost children⇒ leaf dominated: O(n)

W (n) = W (n
2
) +W (n

2
) +W (n

2
) +

√
n

cost node:
√
n

cost children:
√

n
2
+
√

n
2
+
√

n
2
= 3√

2

√
n

cost of leaves: 3log2 n = nlog2 3

α cost node ≤ cost children⇒ leaf dominated: O(nlog2 3)

26 / 33

Brick Method: Leaf Dominated Example

W (n) = W (n
2
) +W (n

2
) +W (n

2
) +

√
n

cost node:
√
n

cost children:
√

n
2
+
√

n
2
+
√

n
2
= 3√

2

√
n

cost of leaves: 3log2 n = nlog2 3

α cost node ≤ cost children⇒ leaf dominated: O(nlog2 3)

27 / 33

Brick Method: Leaf Dominated Proof

S = ⟨1, α, α2, . . . , αn⟩ with α ̸= 1∑
x∈S

x =
αn+1 − 1

α− 1
,

∑
x∈S

x <
1

1− α
with 0 < α < 1

Theorem
If C (v) ≤ 1

α
·
∑

u∈D(v) C (u) for all v with α > 1, then the total cost is

O(C (leaves)).

Proof.

total cost = C (L0) + C (L1) + · · ·+ C (Ld)

≤ 1/αd · C (Ld) + 1/αd−1 · C (Ld) + · · ·+ C (Ld)

= C (Ld)(1 + 1/α + · · ·+ 1/αd)

≤ C (Ld)

(
α

α− 1

)
∈ O(C (Ld))

28 / 33

Brick Method: Leaf Dominated Proof

S = ⟨1, α, α2, . . . , αn⟩ with α ̸= 1∑
x∈S

x =
αn+1 − 1

α− 1
,

∑
x∈S

x <
1

1− α
with 0 < α < 1

Theorem
If C (v) ≤ 1

α
·
∑

u∈D(v) C (u) for all v with α > 1, then the total cost is

O(C (leaves)).

Proof.

total cost = C (L0) + C (L1) + · · ·+ C (Ld)

≤ 1/αd · C (Ld) + 1/αd−1 · C (Ld) + · · ·+ C (Ld)

= C (Ld)(1 + 1/α + · · ·+ 1/αd)

≤ C (Ld)

(
α

α− 1

)
∈ O(C (Ld))

28 / 33

Brick Method: Balanced
The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W (n) = 2W (n
2
) +O(n)

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

O(n)

O(n)

O(n)

O(n)

total cost is log2 n · O(n) = O(n log2 n)

29 / 33

Brick Method: Balanced
The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W (n) = 2W (n
2
) +O(n)

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

O(n)

O(n)

O(n)

O(n)

total cost is

log2 n · O(n) = O(n log2 n)

29 / 33

Brick Method: Balanced
The costs of each level are approximately the same
Neither leaf nor roof dominated

For example in mergesort: W (n) = 2W (n
2
) +O(n)

n

n
2

n
4

· · · · · ·

n
4

· · · · · ·

n
2

n
4

· · · · · ·

n
4

· · · · · ·

log2 n

O(n)

O(n)

O(n)

O(n)

total cost is log2 n · O(n) = O(n log2 n)
29 / 33

Brick Method “Masterform”

W (n) = a ·W
(n
b

)
+ f (n)

f (n)

f (nb) . . . f (nb)

a copies

leaves = alogb n = nlogb a

compare: f (n) : a · f
(
n
b

)
> root dominated

< leaf dominated

= balanced

The techniques described in this lecture allow you to derive the result of the “Master
Theorem” whenever necessary.

30 / 33

Brick Method “Masterform”

W (n) = a ·W
(n
b

)
+ f (n)

f (n)

f (nb) . . . f (nb)

a copies

leaves = alogb n = nlogb a

compare: f (n) : a · f
(
n
b

)
> root dominated

< leaf dominated

= balanced

The techniques described in this lecture allow you to derive the result of the “Master
Theorem” whenever necessary.

30 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

31 / 33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced

W (n) = W (n2) +W (n3) +
√
n

This recurrence is leaf-dominated as
√
n <

√
n
2 +

√
n
3

How many leaf nodes? New recurrence: L(n) = L(n2) + L(n3)

The substitution method consists of two steps

(educated) guess: good luck... intuition

check: proof by induction

Our guess: L(n) = nb for some b

base case: L(1) = 1 = 1b

induction: nb =
(
n
2

)b
+
(
n
3

)b
after simplification (dividing by nb): 1 =

(
1
2

)b
+
(
1
3

)b
solution: b ≈ .788, so L(n) ≈ n.788 and W (n) ∈ O(n.788)

32 / 33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced

W (n) = W (n2) +W (n3) +
√
n

This recurrence is leaf-dominated as
√
n <

√
n
2 +

√
n
3

How many leaf nodes?

New recurrence: L(n) = L(n2) + L(n3)

The substitution method consists of two steps

(educated) guess: good luck... intuition

check: proof by induction

Our guess: L(n) = nb for some b

base case: L(1) = 1 = 1b

induction: nb =
(
n
2

)b
+
(
n
3

)b
after simplification (dividing by nb): 1 =

(
1
2

)b
+
(
1
3

)b
solution: b ≈ .788, so L(n) ≈ n.788 and W (n) ∈ O(n.788)

32 / 33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced

W (n) = W (n2) +W (n3) +
√
n

This recurrence is leaf-dominated as
√
n <

√
n
2 +

√
n
3

How many leaf nodes? New recurrence: L(n) = L(n2) + L(n3)

The substitution method consists of two steps

(educated) guess: good luck... intuition

check: proof by induction

Our guess: L(n) = nb for some b

base case: L(1) = 1 = 1b

induction: nb =
(
n
2

)b
+
(
n
3

)b
after simplification (dividing by nb): 1 =

(
1
2

)b
+
(
1
3

)b
solution: b ≈ .788, so L(n) ≈ n.788 and W (n) ∈ O(n.788)

32 / 33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced

W (n) = W (n2) +W (n3) +
√
n

This recurrence is leaf-dominated as
√
n <

√
n
2 +

√
n
3

How many leaf nodes? New recurrence: L(n) = L(n2) + L(n3)

The substitution method consists of two steps

(educated) guess: good luck... intuition

check: proof by induction

Our guess: L(n) = nb for some b

base case: L(1) = 1 = 1b

induction: nb =
(
n
2

)b
+
(
n
3

)b

after simplification (dividing by nb): 1 =
(
1
2

)b
+
(
1
3

)b
solution: b ≈ .788, so L(n) ≈ n.788 and W (n) ∈ O(n.788)

32 / 33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced

W (n) = W (n2) +W (n3) +
√
n

This recurrence is leaf-dominated as
√
n <

√
n
2 +

√
n
3

How many leaf nodes? New recurrence: L(n) = L(n2) + L(n3)

The substitution method consists of two steps

(educated) guess: good luck... intuition

check: proof by induction

Our guess: L(n) = nb for some b

base case: L(1) = 1 = 1b

induction: nb =
(
n
2

)b
+
(
n
3

)b
after simplification (dividing by nb): 1 =

(
1
2

)b
+
(
1
3

)b

solution: b ≈ .788, so L(n) ≈ n.788 and W (n) ∈ O(n.788)

32 / 33

Substitution Method: “Guess and Check”
Computing can be tricky if tree is unbalanced

W (n) = W (n2) +W (n3) +
√
n

This recurrence is leaf-dominated as
√
n <

√
n
2 +

√
n
3

How many leaf nodes? New recurrence: L(n) = L(n2) + L(n3)

The substitution method consists of two steps

(educated) guess: good luck... intuition

check: proof by induction

Our guess: L(n) = nb for some b

base case: L(1) = 1 = 1b

induction: nb =
(
n
2

)b
+
(
n
3

)b
after simplification (dividing by nb): 1 =

(
1
2

)b
+
(
1
3

)b
solution: b ≈ .788, so L(n) ≈ n.788 and W (n) ∈ O(n.788)

32 / 33

Asymptotic Analysis

Recurrences

Tree Method

Brick Method

Substitution Method

33 / 33

	Asymptotic Analysis
	Recurrences
	Tree Method
	Brick Method
	Substitution Method

