Recitation 7

Treaps and Combining BSTs

7.1 Announcements

- *FingerLab* is due **Friday afternoon**. It’s worth 125 points.
- *RangeLab* will be released on **Friday**.
7.2 Deletion from a Treap

Recall that a treap is a BST with a priority function \(p : U \to \mathbb{Z} \), where \(U \) is the universe of keys. You should think of \(p \) as a random number generator: for each key, it returns a random integer. A treap has two structural properties:

1. **BST invariant**: For every \(\text{Node}(L, k, R) \), we have \(\ell < k \) for every \(\ell \) in \(L \), and symmetrically \(k < r \) for every \(r \) in \(R \).

2. **Heap invariant**: For every \(\text{Node}(L, k, R) \), we have that \(p(k) > p(x) \) for every \(x \) in either \(L \) or \(R \).

Consider the following strategy for deleting a key \(k \) from a treap:

1. Locate the node containing \(k \),
2. Set the priority of \(k \) to be \(-\infty\) (note that if \(k \) has children, then this breaks the heap invariant of the treap),
3. Restore the heap invariant by rotating \(k \) downwards until it has only leaves for children,
4. Delete \(k \) by replacing its node with a leaf.

A “rotation” in this case refers to the process of making one of \(k \)'s children the root, depending on their relative priorities. For example, if \(k \) has two children with priorities \(p_1 \) and \(p_2 \) where \(p_1 > p_2 \), we rotate like so:

![Rotation Diagram]

The case of \(p_1 < p_2 \) is symmetric. In turns out that this process is equivalent to calling \textit{join} on the children of \(k \). You should convince yourself of this.

We’re interested in the following: in expectation, \textit{how many rotations must we perform before we can delete} \(k \)?
Let’s set up the specifics: we have a treap \(T \) formed from the sorted sequence of keys \(S \), \(|S| = n \). We’re interested in deleting the key \(S[d] \). Let \(T' \) be the same treap, except that the priority of \(S[d] \) is now \(-\infty\).

We need a couple indicator random variables:

\[
X^i_j = \begin{cases}
1, & \text{if } S[i] \text{ is an ancestor of } S[j] \text{ in } T \\
0, & \text{otherwise}
\end{cases}
\]

\[
(X')^i_j = \begin{cases}
1, & \text{if } S[i] \text{ is an ancestor of } S[j] \text{ in } T' \\
0, & \text{otherwise}
\end{cases}
\]

Task 7.1. Write \(R_d \), the number of rotations necessary to delete \(S[d] \), in terms of the given random variables.

Task 7.2. Give \(E[X^i_d] \) and \(E[(X')^i_d] \) in terms of \(i \) and \(d \).

Task 7.3. Compute \(E[R_d] \). For simplicity, you may assume \(1 \leq d \leq n - 2 \).
7.3 Generalized Combination

In lecture, we discussed union, and argued that it has $O\left(m \log \left(\frac{n}{m} + 1\right)\right)$ work and $O(\log(n) \log(m))$ span. The latter bound can be improved to $O(\log n + \log m)$ using futures\(^1\), but that is outside the scope of this course.

Let’s begin by inspecting the code for union.

```
Algorithm 7.4. BST union.
  1 fun union (T_1,T_2) =
  2    case (T_1,T_2) of
  3      (_,Leaf) ⇒ T_1
  4      (Leaf,_) ⇒ T_2
  5      (Node (L_1,x,R_1),_) ⇒
  6        let val (L_2,_,R_2) = split (T_2,x)
  7        val (L,R) = (union (L_1,L_2) || union (R_1,R_2))
  8      in joinMid (L,x,R)
  9    end
```

What about the functions intersection and difference? These can be implemented in a similar fashion as union, and as such have the same cost bounds. In this recitation, we’ll establish this more concretely.

Task 7.5. Implement a helper function combine which has $O\left(m \log \left(\frac{n}{m} + 1\right)\right)$ work and $O(\log(n) \log(m))$ span for BSTs of size n and m, $n \geq m$. Use combine to implement intersection and difference. Conclude that all three of the set functions have the same cost bounds.

Task 7.6. Consider a function symdiff where (symdiff (A,B)) returns a BST containing all keys which are either in A or B, but not both. Implement symdiff in terms of combine.

\(^1\)http://dl.acm.org/citation.cfm?id=258517
7.4 Additional Exercises

Exercise 7.7. Describe an algorithm for inserting an element into a treap by “undoing” the deletion process described in Section 7.2.

Exercise 7.8. For treaps, suppose you are given implementations of find, insert, and delete. Implement split and joinMid in terms of these functions. You’ll need to “hack” the keys and priorities; i.e., assume you can do funky things like insert a key with a specific priority.

Exercise 7.9. Given a set of key-priority pairs \((k_i, p_i) : 0 \leq i < n\) where all of the \(k_i\)'s are distinct and all of the \(p_i\)'s are distinct, prove that there is a unique corresponding treap \(T\).