Recitation 15

Priority Queues

15.1 Announcements

- *DPLab* has been released, and is due this Friday.
15.2 Leftist Heaps

Task 15.1. Identify the defining properties of a leftist heap.

A leftist heap is a binary tree given by

```
datatype tree = Leaf | Node of key × tree × tree
```

which satisfies

(a) the *heap property*, requiring that the key stored at each node is smaller\(^1\) than any descendant key, and

(b) the *leftist property*, requiring that for every `Node(_, L, R)`, we have `rank(L) \geq rank(R)`.

We define the *rank* of a heap to be the number of nodes in its right spine, i.e.,

\[
\begin{align*}
\text{rank}(\text{Leaf}) &= 0 \\
\text{rank}(\text{Node}(_-, L, R)) &= 1 + \text{rank}(R)
\end{align*}
\]

Task 15.2. What is an upper bound on the rank of the root of a leftist heap?

For a leftist heap containing \(n\) entries, the rank of the root is at most \(\log_2(n + 1)\).

\(^1\)We assume a min-heap. In a max-heap, each key is larger than its descendents.
15.2. LEFTIST HEAPS

15.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

```
Data Structure 15.3. Leftist Heap

datatype PQ = Leaf | Node of int * key * PQ * PQ

fun rank Q =
case Q of
  Leaf ⇒ 0
| Node (r,_,_,_) ⇒ r

fun makeLeftistNode (k,A,B) =
  if rank A < rank B then
    Node (1 + rank A, k, B, A)
  else
    Node (1 + rank B, k, A, B)

fun meld (A,B) =
case (A,B) of
  (_, Leaf) ⇒ A
| (Leaf, _) ⇒ B
| (Node (_,ka,La,Ra), Node (_,kb,Lb,Rb)) ⇒
  if ka < kb then
    makeLeftistNode (ka, La, meld (Ra,B))
  else
    makeLeftistNode (kb, Lb, meld (A,Rb))

fun singleton k = Node (1,k,Leaf,Leaf)

fun insert (Q,k) = meld (Q, singleton k)

fun fromSeq S = Seq.reduce meld Leaf (Seq.map singleton S)

fun deleteMin Q =
case Q of
  Leaf ⇒ (NONE, Q)
| Node (_,k,L,R) ⇒ (SOME k, meld (L,R))
```
Task 15.4. *Diagram the process of executing the code*

\[\text{fromSeq} \ (3, 5, 2, 1, 4, 6, 7, 8) \]

\[
\begin{array}{cccccccc}
3 & 5 & 2 & 1 & 4 & 6 & 7 & 8 \\
3 & 1 & 4 & 7 & & & & \\
/ & / & / & / & & & & \\
5 & 2 & 6 & 8 & & & & \\
1 & 4 & & & & & & \\
/ & \ & \ & \ & & & & \\
2 & 3 & 6 & 7 & & & & \\
/ & / & & & & & & \\
5 & 8 & & & & & & \\
1 & & & & & & & \\
/ & \ & & & & & & \\
3 & 2 & & & & & & \\
/ & \ & & & & & & \\
4 & 5 & & & & & & \\
/ & \ & & & & & & \\
6 & 7 & & & & & & \\
/ & & & & & & & \\
8 & & & & & & & \\
\end{array}
\]

Task 15.5. *What are the work and span of \(\text{fromSeq} \ S \) in terms of \(|S| = n|?\)*

Notice that \text{meld} only traverses the right spines of its arguments, each of which are logarithmic in length, and therefore \text{meld}(A, B) requires \(O(\log |A| + \log |B|) \) work and span and returns a heap of size \(|A| + |B|\). This suggests the recurrences

\[
W(n) = 2W(n/2) + O(\log n) \\
S(n) = S(n/2) + O(\log n)
\]

both of which we have seen before; they solve to \(O(n) \) work and \(O(\log^2 n) \) span, respectively.
15.2. LEFTIST HEAPS

15.2.2 Dynamic Median

Task 15.6. Design a data structure which supports the following operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fromSeq S</td>
<td>$O(</td>
<td>S</td>
<td>)$</td>
</tr>
<tr>
<td>median M</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Returns the median of all keys stored in M</td>
</tr>
<tr>
<td>insert (M, k)</td>
<td>$O(\log</td>
<td>M</td>
<td>)$</td>
</tr>
</tbody>
</table>

For simplicity, you may assume that all elements inserted into such a structure are distinct.

Our data structure will be a triple (L, m, G), where L is a max-heap, m is the median, and G is a min-heap. We maintain the invariant that L contains all items less than m, and symmetrically G contains all items greater than m.

To implement fromSeq, we use a selection algorithm (i.e. quickselect) to select the median of the sequence using linear work and log-squared span. We filter twice to create a left and right half containing all items less than and greater than the median, respectively. Perform MaxPQ.fromSeq and MinPQ.fromSeq on these halves to construct L and G.

To implement insert, check if $k \geq m$. If so, insert k into G. If this results in $|L|+2 = |G|$, then insert m into L, delete the minimum from G, and set it to be the new median. We do the obvious symmetric thing for the case $k < m$.

We implement median by simply returning m.
15.3 Additional Exercises

Exercise 15.7. Prove a lower bound of $\Omega(\log n)$ for `deleteMin` in comparison-based meldable priority queues. That is, prove that any meldable priority queue implementation which has a logarithmic `meld` cannot support `deleteMin` in faster than logarithmic time.