Recitation 15

Priority Queues

15.1 Announcements

- *DPLab* has been released, and is due this Friday.
15.2 Leftist Heaps

Task 15.1. *Identify the defining properties of a leftist heap.*

Task 15.2. *What is an upper bound on the rank of the root of a leftist heap?*
15.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

```
Data Structure 15.3. Leftist Heap
1  datatype PQ = Leaf | Node of int × key × PQ × PQ
2
3  fun rank Q =
4    case Q of
5      Leaf ⇒ 0
6    | Node (_, _, _, _) ⇒ r
7
8  fun makeLeftistNode (k, A, B) =
9    if rank A < rank B
10       then Node (1 + rank A, k, B, A)
11       else Node (1 + rank B, k, A, B)
12
13  fun meld (A, B) =
14    case (A, B) of
15      (_, Leaf) ⇒ A
16    | (Leaf, _) ⇒ B
17    | (Node (_, ka, La, Ra), Node (_, kb, Lb, Rb)) ⇒
18      if ka < kb
19          then makeLeftistNode (ka, La, meld (Ra, B))
20          else makeLeftistNode (kb, Lb, meld (A, Rb))
21
22  fun singleton k = Node (1, k, Leaf, Leaf)
23
24  fun insert (Q, k) = meld (Q, singleton k)
25
26  fun fromSeq S = Seq.reduce meld Leaf (Seq.map singleton S)
27
28  fun deleteMin Q =
29    case Q of
30      Leaf ⇒ (NONE, Q)
31    | Node (_, k, L, R) ⇒ (SOME k, meld (L, R))
```

Task 15.4. Diagram the process of executing the code

```
fromSeq ⟨3, 5, 2, 1, 4, 6, 7, 8⟩
```

Task 15.5. What are the work and span of (fromSeq S) in terms of |S| = n?
15.2.2 Dynamic Median

Task 15.6. Design a data structure which supports the following operations:

<table>
<thead>
<tr>
<th>Work</th>
<th>Span</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fromSeq S</td>
<td>$O(</td>
<td>S</td>
</tr>
<tr>
<td>median M</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>insert (M,k)</td>
<td>$O(\log</td>
<td>M</td>
</tr>
</tbody>
</table>

For simplicity, you may assume that all elements inserted into such a structure are distinct.
15.3 Additional Exercises

Exercise 15.7. Prove a lower bound of $\Omega(\log n)$ for deleteMin in comparison-based meldable priority queues. That is, prove that any meldable priority queue implementation which has a logarithmic meld cannot support deleteMin in faster than logarithmic time.