Recitation 12

Graph Contraction and MSTs

12.1 Announcements

- *SegmentLab* has been released, and is due Friday, November 17. It’s worth 135 points.
- *Midterm 2* is on Wednesday, November 8.
12.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components in a graph:

Algorithm 12.1. (Algorithm 17.22 in the textbook.)

```plaintext
1 countComponents (V, E) =
2 if |E| = 0 then |V| else
3 let
4 (V', P) = starPartition (V, E)
5 E' = \{(P[u], P[v]) : (u, v) ∈ E | P[u] ≠ P[v]\}
6 in
7 countComponents (V', E')
8 end
```

with `starPartition` implemented as follows:

Algorithm 12.2. (Algorithm 17.15 in the textbook.)

```plaintext
1 starPartition (V, E) =
2 let
3 TH = \{(u, v) ∈ E | ¬heads(u) ∧ heads(v)\}
4 P = \bigcup_{(u,v)∈TH} \{u \mapsto v\}
5 V' = V \setminus \text{domain}(P)
6 P' = \{u \mapsto u : u ∈ V'\}
7 in
8 (V', P' ∪ P)
9 end
```

Now, suppose we implemented star partitioning for enumerated graphs as follows:

```plaintext
val enumStarPartition : (int * int) Seq.t * int → int Seq.t
```

Specifically, given a graph represented as a sequence of edges E where every vertex is labeled $0 ≤ v < n$, `(enumStarPartition (E, n))` returns a mapping P where $P[v]$ is the super-vertex containing v. (If v was a star center or was unable to contract, then $P[v] = v$.)

Task 12.3. Implement a function `enumCountComponents` which counts the number of components of an enumerated graph. It should take in a graph represented as `(E, n)` and use `enumStarPartition` internally.
A direct but incorrect translation of the original code might look like this:

```plaintext
fun incorrectCountComponents (E, n) = 
  if |E| = 0 then n else 
  let 
    val P = enumStarPartition (E, n) 
    val E' = \((P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\) 
  in 
  incorrectCountComponents (E', n) 
end
```

The problem with this code is that it doesn’t actually count the number of connected components, despite performing the contraction correctly. This is because we never modify the value n.

A first step in fixing the issue is to add a line after line 5 which counts the number of distinct vertices in E'. Specifically, we use P to identify which vertices no longer exist, filter them out, then simply take the length of the resulting sequence:

```plaintext
val n' = |\{v : 0 \leq v < n \mid P[v] = v\}|
```

We could then pass n' in to the recursive call rather than n. However, we now notice an even bigger problem: not all vertices in E' are labeled $0 \leq v < n'$.

What we really need to do is construct a new labeling within the range $[0, n')$. We can do so by marking each each contracted vertex with a 0 and each remaining vertex with a 1 and running a +-scan. This determines a sequence P' which maps each remaining vertex to a unique label in the range $[0, n')$. This step also conveniently calculates n'. At the end of the round, when we promote edges by relabeling their endpoints, we have to further relabel them according to P'. The code is as follows.

Algorithm 12.4. Counting connected components in an enumerated graph.

```plaintext
fun enumCountComponents (E, n) = 
  if |E| = 0 then n else 
  let 
    val P = enumStarPartition (E, n) 
    val isAlive v = if P[v] = v then 1 else 0 
    val (P', n') = Seq.scan + 0 isAlive(v) : 0 \leq v < n 
    val E' = \((P'[u], P'[v]) : (u, v) \in E \mid P[u] \neq P[v]\) 
  in 
  enumCountComponents (E', n') 
end
```
12.2.1 Cost Bounds

Task 12.5. Recall that a forest is a collection of trees. What are the work and span of `enumCountComponents` when applied to a forest? Assume that `(enumStarPartition (E, n))` requires $O(n + |E|)$ work and $O(\log n)$ span.

Line 6 of `enumCountComponents` clearly requires $O(n)$ work and $O(\log n)$ span. Line 7 is just a map followed by a filter, and therefore requires $O(m)$ work and $O(\log n)$ span. But how do n and m change, round-to-round?

Regarding n, we recall that star-partitioning removes at least $n/4$ vertices in expectation, and therefore we expect the number of vertices to decrease geometrically.

For general graphs, we can’t say that m decreases geometrically. However, a tree has $n - 1$ edges, and therefore m is initially upper bounded by $n - 1$. Furthermore, on each round, exactly one edge is deleted for every vertex which is deleted. Therefore, for forests and trees, m decreases geometrically during contraction. Therefore the total work and span of this algorithm for an input forest of n vertices are $O(n)$ and $O(\log^2 n)$, respectively.