Recitation 12

Graph Contraction and MSTs

12.1 Announcements

- *SegmentLab* has been released, and is due Friday, November 17. It’s worth 135 points.
- *Midterm 2* is on Wednesday, November 8.
12.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components in a graph:

Algorithm 12.1. (Algorithm 17.22 in the textbook.)

1. \(\text{countComponents} (V, E) = \)
2. \(\text{if } |E| = 0 \text{ then } |V| \text{ else} \)
3. \(\text{let} \)
4. \((V', P) = \text{starPartition} (V, E) \)
5. \(E' = \{(P[u], P[v]) : (u, v) \in E \mid P[u] \neq P[v]\} \)
6. \(\text{in} \)
7. \(\text{countComponents} (V', E') \)
8. \(\text{end} \)

with \(\text{starPartition} \) implemented as follows:

Algorithm 12.2. (Algorithm 17.15 in the textbook.)

1. \(\text{starPartition} (V, E) = \)
2. \(\text{let} \)
3. \(TH = \{(u, v) \in E \mid \neg \text{heads}(u) \land \text{heads}(v)\} \)
4. \(P = \bigcup_{(u, v) \in TH} \{u \mapsto v\} \)
5. \(V' = V \setminus \text{domain}(P) \)
6. \(P' = \{u \mapsto u : u \in V'\} \)
7. \(\text{in} \)
8. \((V', P' \cup P) \)
9. \(\text{end} \)

Now, suppose we implemented star partitioning for enumerated graphs as follows:

\[\text{val enumStarPartition} : \text{(int * int) Seq.t} \times \text{int} \rightarrow \text{int Seq.t} \]

Specifically, given a graph represented as a sequence of edges \(E \) where every vertex is labeled \(0 \leq v < n \), \(\text{(enumStarPartition} (E, n)) \) returns a mapping \(P \) where \(P[v] \) is the super-vertex containing \(v \). (If \(v \) was a star center or was unable to contract, then \(P[v] = v \).)

Task 12.3. Implement a function \(\text{enumCountComponents} \) which counts the number of components of an enumerated graph. It should take in a graph represented as \((E, n) \) and use \(\text{enumStarPartition} \) internally.
12.2.1 Cost Bounds

Task 12.4. Recall that a forest is a collection of trees. What are the work and span of \(\text{enumCountComponents} \) when applied to a forest? Assume that \((\text{enumStarPartition} \ (E, n)) \) requires \(O(n + |E|) \) work and \(O(\log n) \) span.