15-210: Parallel and Sequential Data Structures and Algorithms

Probability for Randomized Algorithms

1 Probability Basics

1.1 Why Randomized Algorithms?

In order to analyze the work and span of randomized algorithms, we will often find ourselves
using probabilty and related topics. In particular, when analyzing the work of a randomized al-
gorithm, we typically use expected value. Looking at span requires us to use a different proba-
bility tool - the high probability bound. To understand both of these, we’ll also introduce some
other concepts, such as random variables, which will allow us to more easily apply probability
to randomized algorithms.

But why do we even use randomized algorithms in the first place? As it turns out, the best ran-
domized algorithms are often asymptotically equivalent to the best deterministic ones, and
in some cases, they can be better. Moreover, deterministic algorithms often have worst-case
inputs where they might perform particularly badly. Randomized algorithms can avoid this
problem since their inherent randomness can prevent adversarial inputs from leading to ex-
tremely long runtimes.

Implementing randomized algorithms can also be simpler than their deterministic counter-
parts. An example of this comes from the problem of primality testing, where we need to re-
turn whether or not an integer is prime. The Miller-Rabin randomized algorithm for this prob-
lem is very simple and can be implemented quickly, in around 20 lines of Python or a similar
language. The actual details of this algorithm are outside the scope of this course, but it is no-
table for running in expected polynomial time. For 30 years after its creation, it was unknown
whether a deterministic polynomial time algorithm for this problem even existed, and when
one was found, it turned out to be very complex.

Randomness can also be used to break symmetry in algorithms. There are sometimes places
in our algorithms where we are presented with multiple options to explore, and our runtime is
heavily dependent on which option we choose. We'll see this later, when quicksort chooses an
arbitrary pivot with which it splits the array. In these cases, randomness can be used to select
one of the options, ensuring that each one is used some of the time. In contrast, deterministi-
cally selecting the same choice every time could lead to always getting an undesirable runtime.

1.2 Disadvantages of Randomized Algorithms

Definition: Two Types of Randomized Algorithms

A Las Vegas algorithm is an algorithm whose cost bounds are a random variable, but
always will return the correct result.

A Monte Carlo algorithm may not generate the right answer every time, but does get
the right answer with some positive probability. Thus, running a Monte Carlo algorithm
many times increases the probability that the right answer is found at least once.

In our course, we will focus on the study of Las Vegas algorithms. When writing such an al-
gorithm, we ideally want to prove that when it returns, it is always going to return the correct
result. This means that, ifitis called with the same inputs repeatedly, it should output the same
things every time. Despite this, it will use randomness within its execution, meaning that the
execution paths that it goes down may vary between runs. This can lead to unpredictability in
terms of runtime and resource usage, which is sometimes an undesirable property. In fact, the
runtime of a randomized algorithm with sufficiently unlucky randomness can be unbounded!
The probability of this happening is typically small enough that it is not problematic in practice,
but is at least worthy of note here.

In a parallel context, further concerns regarding runtime emerge. If we run a randomized pro-
cess on several parallel threads and wait for them all to finish, then our overall runtime is equal
to that of the slowest single thread. Even if all of the other threads finish quickly, having to wait
for one slow thread can lead to inefficiency. Finally, randomized algorithms can also be diffi-
cult to analyze, since we have to account for the randomness when finding the work and span
of such an algorithm.

2 Example: The Random Distance Run

The CMU Random Distance Run is an annual event put on by SCS, involving two large fuzzy
six-sided dice. The two dice are both rolled, and the sum of the numbers on top of the dice
is used to determine how many laps the competitors have to run around the CMU track. The
race can be as short as half a mile, if two 1s are rolled, and can get up to 3 miles (just under 5
kilometers) if two 6s are rolled. We can use the Random Distance Run to explore some basic
probability definitions.

The first definition we want to consider is that of a sample space, typically denoted Q2. A sample
space represents the set of possible outcomes in a situation. We also consider a probability
measure, which is a function P that maps the power set of 2 to R with some restrictions. In
particular, for any event A we have 0 < P(A) < 1 - all probabilities are between 0 and 1. It
also needs to hold that P(2) = 1, meaning that one of the possibilities in 2 always happens.
Finally, if A and B are disjoint events, then P(A)+ P(B) must be equal to P(AU B). Essentially, a
probability measure is a function which tells us the probabilities of events — an event is defined
as a subset of the sample space. Our last important definition is that of a random variable.
Random variables are typically denoted by capital letters such as X. They are deterministic

functions which map the sample space to the real numbers.

Example: Random Distance Run

In the Random Distance Run, we can define two random variables. We can let D, be the
value that the first die rolls, and D, be the value that the second die rolls. Our sample
space is the set of possible rolls for the two dice, and D, and D, each take outcomes from
the sample space and map them to real numbers in {1,2,3,4,5,6}.

A special type of random variable is the indicator random variable, which is always either
equal to 1 or 0 based on whether some event occurs or does not occur. We will use indicator
random variables frequently when analyzing algorithms.

Once we have random variables to work with, we can start considering their expected values.
The expected value of a random variable can be thought of as a weighted sum of its possible
outcomes. More formally, we define the expected value of X as:

E[X]= ZPr(a) - X(a)
=9

Here, we sum over all possible outcomes in the sample space. For each outcome, we multiply
the probability of it occurring by the value of X if it does occur.

Example

The expected value of D; is 7/2. To find this, we can note that the random variable takes
on the values 1, 2, 3, 4, 5, and 6, each with probability 1/6. Then our computation is:

1 14243+445+6 7
6 6 T2

11
1-—42-—+---46
6 6

The expected value of D, is the same as that of D;, since it is also a fair six-sided die —
assuming it is independent of D;.

But what happens if we wanted to find the expected number of laps that the runners have to
run? This would be the expected value of D; + D5, the sum of two random variables. It turns
out that we can use a theorem known as linearity of expectation here!

Theorem: Linearity of Expectation

For two random variables X and Y, itholds that E[X + Y]=E[X]+E[Y].

Example

The expected value of D, + D,, the sum of the dice, is 7/2+7/2 =7 by linearity of expec-
tation.

What if we wanted to know the expected product of two dice? This problem is a bit harder. Let’s
define a new random variable D = D, D,, equal to the product of the two dice. This expected

value is a bit harder, since multiplying two expected values does not always give the expected
value of the product. There are still some cases where this is allowed, though.

Theorem: Products of independent random variables

For two independent random variables X and YV, E[XY]|=E[X]E[Y].

We say that two random variables are independent if Pr(X = a,Y = b] =Pr[X = a]Pr[Y = b]
for all possible outcomes a and b — that is, the value of X does not affect the value of Y, and
vice versa.

The expected value of the product of the two dice is (7/2)-(7/2) = (49/4), assuming the
dice are independent.

What if we don't have independence? In this case, we have to compute our expected value from
the definition, by finding each of the different potential values and multiplying them by their
probabilities, then taking the sum.

Let’s say the two dice are still fair and six-sided, but now are rigged in a way that leads to
them always rolling the same number.

The expected value of the sum of the dice is still 7. Each die has an expected value of
7/2, and while the dice are not independent, linearity still holds. However, the expected
value of the product is more complicated. There is a 1/6 probability of both dice being
1, the same probability of them both being 2, and so on and so forth. Thus, we sum:

1 1 1 1+4494+16+254+36 91
l1-=+4-—+--+36-—= =—
6 6 6 6 6

Notice that this expected value is not the same as the expected product of the two inde-
pendent dice that we computed earlier!

Other functions, such as the max function, are even more complicated to compute when ap-
plied to random variables. We can systematically calculate the value of the function on every
outcome in the sample space, then multiply each by the probabilities, eventually giving us our
desired answer. In general, arbitrary functions do not compose well with expected values for
random variables.

3 Further Probability Definitions

The union bound can be used to provide an upper bound on the probability that at least one
event out of some set of events occurs. For two events A and B, it states that the probability
that either A or B happens is upper bounded by Pr[A]+ Pr[B] - that is, Pr{AU B] < Pr[A]+ Pt B].

More generally, it states that the probability of the union of events is upper bounded by the sum
of the probabilities of each of the individual events. This gives us a powerful tool for bounding
the probability that no “bad” events occur in certain situtations.

The conditional probability of A given B, often written Pr[A | B], is the last definition we will
introduce. It is defined as:

Pr{AN B]

Pr{A| B]=

3.1 Harmonic Numbers
The harmonic numbers show up frequently in the analysis of randomized algorithms.

Definition: Harmonic Numbers

The n™ harmonic number H,, is defined as the sum of the reciprocals of the first n
positive integers. Mathematically:

Harmonic numbers are nice to see because they are small.

Theorem: Harmonic numbers are logarithmic

The n™™ harmonic number H,,, satisfies

Inn<H,<lnn+1

In simpler terms, H,, = O(log n), which is a quantity we are usually happy to see in algorithms!

Example: Car Clusters

Suppose n cars are driving along a straight line, initially spaced so that none are touch-
ing. Each car is assigned a distinct maximum speed, chosen uniformly at random. Cars
accelerate up to their maximum speed, but ifa car reaches the one in front, it slows down
to match that car’s speed.

A cluster is a group of cars that end up driving together at the same speed. How many
clusters should we expect?

Observe that car i (counting from front to back) forms a new cluster if and only if its
speed is less than the speeds of all cars in front of it. Since speeds are assigned uniformly
at random, this occurs with probability 1/i.

Let X; be the indicator variable for the event that car i forms a new cluster. Then E[X;] =

1/i, and the total number of clusters is

By linearity of expectation,

E[C] :Z % = H, =0(logn).
i=1

4 Tail Bounds

When analyzing a randomized algorithm, we primarily care about what will happen most of
the time. This is not to say we don’t care about the things that are unlikely to happen, though.
In fact, these cases represent how our algorithm is doing when it is running badly. We'd like to
consider how often we end up with a particularly bad runtime, and this is where tail bounds
can help us. These bounds are inequalities telling us how often we will end up with a runtime
greater than some threshold, and are often based on the expected runtime that we calculate.

One common tool we use for tail bounds is called Markov’s inequality.

Theorem: Markov’s Inequality

For a random variable X which always is greater than or equal to 0:

Pr[X > a]< ElX]
a

What does this mean intuitively? If we have a probability distribution for X with some expected
value E[X], then Markov’s inequality says that we can't be very far above E[X] too often. To
show this, let’s look at what would happen if the probability Pr[X > a] was greater than E[X]/a.
The rest of the time, X is at least 0, which “contributes” a nonnegative value to the expected
value calculation. However, with probability greater than E[X]/a, X is atleast a, meaning that
the expected value is greater than (E[X]/a)- a: a contradiction.

5 Analyzing Algorithms

The quicksort algorithm is a randomized algorithm. It operates on an array A by picking a pivot
randomly, then splitting the array into two parts — the elements less than A, and the elements
greater than A. It then recursively quicksorts both sub-parts, and then appends them to get the
final solution.

Being a randomized algorithm, it’s possible for this algorithm to perform very badly with an
unfortunate choice of pivots. But how likely is this outcome? As it turns out, this happens with

a very small probability. Thus, it’s not worth worrying about too much. Rather, we concern
ourselves with the expected work, and the span that occurs with high probability. Our goal is to
analyze the work and span in our fork-join model. This means that we might need to consider
cost graphs that are random in nature, and whose work and span are represented as random
variables rather than integers. We'll do the analysis of the quicksort algorithm itself later, but
we first need to define these tools.

To find the work, we can add the expected work of each part of an algorithm using linearity of
expectation. The span is more complicated, because the span of two things in parallel uses the
max function. This means that we cannot use linearity of expectation, and thus, for span we
try to use high-probability bounds rather than expected values.

5.1 High Probability Bounds

Definition: High Probability

We say that a random variable W(n) < f(n) with high probability (w.h.p.) if there exists
a constant ng such that for any integer value of k > 1 and any n > ny:

Pr{W(n)<k-f(n)] > 1—%

We will also write W(n) € O(f(n)) wh.p.if W(n) < c: f(n) w.h.p. for some constant c.

This is a way of expressing a very stringent tail bound on the random variable W(n). As we
increase k, the bound is loosened but must be met with higher probability. Typically, this is
done by showing that Pr{W (n) > k - f(n)] < 1/n*, for sufficiently large n.

Why do we insist on being able to do this with all values of k? The answer is that it allows us to
apply a union bound over polynomially many events in 7 that each hold w.h.p., and show that
all of them hold simultaneously w.h.p. For example, this works well for bounding the span of
parallel programs. If I run an algorithm that forks 7 processes, the span of the overall algorithm
is equal to the maximum span of any of the forked processes.

Theorem: Max Preserves w.h.p Bounds

Let S(n) be a non negative random variable, and let T(n) = max(S(n),...,S(n)), where
there are n (not necessarily independent) copies of S(n) in the max. If S(n) < f(n) w.h.p.
then T(n) <2f(n)w.h.p. It follows that if S(n) € O(f(n)) w.h.p. then so is T(n).

Proof. Denote the n instances of S(n) as §,(n),..., S,(n). The event that T(n) > (k+1) f(n)is the
same as the event that at least one of the events S;(n) satisfies S;(n) > (k +1)f(n). Thus we can
apply the union bound and infer that Pr[T(n) > (k + 1) f(n)] < nPr[S(n) > (k +1)f(n)]. But we

1 1
know that Pr[S(n)> (k+1)f(n)] < pyovg It follows that Pr{ T'(n) > (k + 1)]f(n) < pre Since k>1

1
we have 2k > k + 1, and can then infer that Pr[T(n) > k- (2 f(n))] < pred Therefore T'(n)<2f(n)
w.h.p. O

5.2 The Skittles Game

Let’s now consider another game to illustrate high probability bounds.

Problem: Skittles Game

The Skittles game is played with a fair coin and a pile of n Skittles. It is a single-player
game played in rounds. Initially there are s = n Skittles. Each round consists of the
player flipping the coin once. If it comes up heads, then the player eats [5] of the Skittles
and there are | 5] remaining. If it comes up tails, the player proceeds to the next round
without eating any Skittles. The game ends when there are no Skittles remaining. We are
interested in the random variable R(n) which is the number of rounds the game lasts.

In the worst case, the game takes forever, because we might flip tails on every round and never
eat any Skittles. But this outcome has probability zero. Intuitively, you might guess that the
game will last O(logn) rounds, because the number of Skittles will roughly be halved every
couple of rounds, whenever a head is flipped. In fact, O(logn) is a high probability bound for
the length of the Skittles game. Let’s prove this formally.

Claim: Bounds on the Skittles Game

The Skittles game will end in O(log) rounds with high probability.

Proof. To simplify things, let’s change the game a little bit. We change the number of skittles we
eat when we get heads to be s/2 rather than |s/2]. The modified game ends when the number
of skittles goes below 1. Let T(n) be the random variable for the modified game, while R(n) is
for the original game. For any run of the game (using the same source of random coin flips we
know that R(n) < T'(n). So from now on we focus on T'(n).

The outline of the proofis to consider the expected number of Skittles left after i rounds. If we
model this as a random variable, then we can apply Markov’s inequality to it to find how many
rounds it will take for Pr[> 1 Skittle remains] to become sufficiently low.

So let X, be the random variable equal to the number of Skittles remaining after r rounds have
finished. Let’s find the value of X; in terms of i. To do this, we'll consider each individual round
to see how that round’s coin toss might affect the number of Skittles remaining.

On any given round, we have a 1/2 probability of flipping heads, which multiplies the current
size of the pile by 1/2. We also have a 1/2 probability of flipping tails, which leaves the pile size

unchanged. Therefore,
1
X, { X, prob.

X, prob.

SIEE

1 1 1 1 1 3
E[X,41] = 5~E[§Xr]+5E[Xr] = § B+ EIX,] = S EIX,]

Additionally, all rounds are independent, so we unroll the recurrence to get

eixi=n(2)

8

The event that T(n) > r is exactly the same as the event that X, > 1, because the latter event is
equivalent to saying that least one more round after r will occur. So:

Pr[T(n)>r] = Pr[X, >1].

So at this point, to finish the proof, we need to find the value of r such that Pr[X, > 1] is small
enough. The trick is to apply Markov’s inequality to turn our bound on E[X,] into a bound on
Pr[X, > 1]. Specifically Markov’s inequality is the < in the following statement.

;
Pr[X, >1] < EIXA_ n(§) .

1 4
Now we are ready to match this to the definition of with high probability. Specifically, for any
k, wed like to find a number of rounds r in terms of k after which the probability of having
finished is at least 1 —1/n*. This is equivalent to saying that after r rounds, our probability of
having 1 or more Skittles left needs to be less than 1/n*. So we need a value of r such that the

fOllOWing iS Satisﬁed:
n ()r <
4 n)

r> log%(nk“) > 2.409(k + 1)log, n.

Rewriting this in terms of r, we get

Since 2k > k+1 and 5 > 2-2.409, if we choose a r = k - 5log, n, then it is big enough to give us
the desired bound. Thus we have shown that

1
Pr[T(n)> k-5log, n] < Py
It now follows that T'(n) <5-log, n w.h.p. and T'(n) € O(log n) w.h.p. O

We can generalize this phenomenon in a reusable lemma which we will invoke in the next few
lectures.

Lemma: Skittles Lemma

Let Xy =n, and let X, ;; be computed by a random process from X, that guaranties that
0<X,,1 <X, andalsothat E[X,,;]<aE[X,]where 0 < a < 1is a constant. Let T'(n) be
the random variable which is the first round r when X, < 1.

It follows that T'(n) is O(logn) w.h.p. (More specifically T(n) < log, n w.h.p., where
p=-2/log,a.)

	Probability Basics
	Why Randomized Algorithms?
	Disadvantages of Randomized Algorithms

	Example: The Random Distance Run
	Further Probability Definitions
	Harmonic Numbers

	Tail Bounds
	Analyzing Algorithms
	High Probability Bounds
	The Skittles Game

