
15-210: Parallel and Sequential Data Structures and Algorithms

Introduction

1 Imperative versus Functional Programming

1.1 Functions: Imperative versus Pure
By now, you have probably heard the phrases “functions are pointers” and “functions are val-
ues” floating around. In (pure) functional programming, functions are functions—that is, code
functions, defined in your functional programming language of choice, (usually) correspond
to mathematical functions. For example, the Fibonacci function could be defined as an infinite
set of ordered pairs

{(0, 1), (1, 1), (2, 2), (3, 3), (4, 5), (5, 8) . . .}

It also could be defined in pseudocode as follows:

fun f(n : int) -> int:
if (n <= 1): return 1
else: return f(n - 1) + f(n - 2)

In pure-functional programming, this counts as a function, since every natural number input
maps to one output and the code does not have any other side effects1. On the other hand,
consider the following imperative function.

x : int = 0
y : int = 0

fun f(n : int) -> int:
x ← 23;
if (n <= 1): return 1;
else: return f(n - 1) + f(n - 2) + y * 3;

This isn’t a mathematical function for a couple of reasons. First, it affects the environment by
setting the value of x on its first line. The output of this function for a particular input also isn’t
consistent, since the value of y might change as a program executes. This especially poses a
problem for parallel algorithms, which might access or mutate some variable simultaneously.

Definition: Pure functions

A pure function is one that always returns the same output given the same input and
does not have any side effects.

1This assumes an idealized model of computation in which execution always terminates and resource limits
(e.g., stack overflow) and undefined behavior (e.g., integer overflow) do not occur!

1

In general, as long as they terminate and do not raise exceptions, pure functions without side
effects are mathematical functions. The advantage of pure functions is that they can run inde-
pendently without interfering with each other. If we have pure functions f and g , then a call
to f (a) and a call to g (b) can be run in parallel! However, if these two functions are allowed to
modify the shared state, then the results of the functions might depend on which one runs first.
This is called nondeterminism. Pure functions also have the benefit of making it easier for us
to reason about our code—something that is not always afforded by other parallel programs.

Even if we need state, it is still possible to write code that we can reason about:

fun fact(n : int) -> int:
r : int = 1
for i in 1...n:

r ← r*i
return r

Even though the loop contains a side effect where the value of r is modified, this function is
pure. No changes to external state can affect the execution of this function, and mutation of
the function’s own local variables cannot escape the function’s body and cause external side
effects. These kinds of “internal” side effects are sometimes called “benign” side effects.

In 15-210, we will strive to write pure functions as much as possible, since pure code is easier
to reason about. We will however occasionally write impure, imperative-style code where it
is more appropriate for the problem at hand, particularly for sequential algorithms, since our
focus on purity is most important when reasoning about parallelism.

1.2 Imperative versus Functional Data Structures
In your previous classes, you have studied data structures, and indeed the same data structures
in two different contexts: imperative and functional. Recall the binary search tree (BST) data
structure, which we will study even more in this class.

Imperative data structure updates

You might recall the following implementation (written in C) of insertion into a binary search
tree in an imperative program.

// source: 15-122
tree* bst_insert(tree* T, entry e) {

if (T == NULL) return leaf(e);
int cmp = key_compare(entry_key(e), entry_key(T->data));
if (cmp == 0) T->data = e;
else if (cmp < 0) T->left = bst_insert(T->left, e);
else T->right = bst_insert(T->right, e);
return T;

}

What makes this code imperative is that it modifies the given data structure. Consider the pic-
ture below, starting with a BST containing the keys {3, 6, 7, 8}. The operation insert(T, 10)

2

creates a new leaf node containing the key 10 and then mutates the right-child pointer of the 8
node, which was previously NULL, to the new node.

Functional data structure updates

You may also recall the following different implementation (written in Standard ML) of inser-
tion into a binary search tree in a purely functional program.

(* source: 15-150 *)
fun insert (k, v) Empty =

Node (Empty, (k, v), Empty)
| insert (k, v) (Node (L, (k’, v’), R)) =

case Key.compare (k, k’) of
EQUAL => Node (L, (k, v), R)

| LESS => Node (insert (k, v) L, (k’, v’), R)
| GREATER => Node (L, (k’, v’), insert (k, v) R)

In contrast to the imperative implementation above, we notice one big difference. No modifi-
cations to the existing BST take place. Instead, new nodes are created along the insertion path.
Consider again running insert(10, _).

As was also the case in the imperative code, a new node must be created for 10 of course, but
since we can not mutate the right child of the 8 node, the code is forced to create a new 8 node
that has 10 as its right child. Similarly, since the right child of the 6 node can not be mutated to
the new 8 node, it must create a new 6 node with the new 8 node as its right child as well.

If this resulted in making a copy of the entire BST, this would be very inefficient, and we would
probably avoid using this style of programming. However, what makes this algorithm efficient
is that it only creates new nodes for those on the insertion path. For all of the subtrees that are
not modified, the new tree can simply share the old ones as depicted in the picture above.

3

1.3 Persistent Data Structures
This sharing property of functional data structures not only makes them efficient, but also gives
rise to an incredibly useful property, which is that they are naturally persistent.

Definition: Persistent Data Structure

A persistent data structure is a data structure that preserves the old versions of itself
when it is updated.

That is, after we perform insert(10, _) and obtain the new BST containing {3, 6, 7, 8, 10}, the
old BST which only contained {3, 6, 7, 8} still exists and can continue to be queried, or even up-
dated to produce another BST! This turns out to be extremely useful for implementing several
important algorithms, one of which we will see later in the course.

Another way to think of this is that persistence is like having version control (e.g., git) for your
data structure! You can go back and look at old versions, and even update them to branch off
into separate non-linear histories.

Note that you can also implement persistent data structures in an imperative way (and indeed,
you can sometimes make them even more efficient by doing so), but it takes substantial addi-
tional effort in the algorithm design and programming. The amazing thing about functional
data structures is that they come persistent out of the box!

2 Abstraction: Interfaces and ADTs
In this course, we study algorithms at a level of abstraction that separates what an algorithm
does from how it is implemented. This separation is essential for reasoning about correctness,
efficiency, and parallelism in a clean and modular way.

2.1 Interfaces and Abstract Data Types

Definition: Interface

An interface specifies a collection of operations together with their intended behavior.
It describes what operations are available and what they are expected to do, but delib-
erately does not describe how those operations are implemented.

4

Definition: Abstract Data Type

An abstract data type (ADT) is a particular kind of interface that describes a data struc-
ture. An ADT specifies the operations that can be performed on the data structure and
the meaning of those operations, while leaving the underlying representation unspeci-
fied. In this sense, abstract data types are a special case of interfaces.

An implementation provides concrete code for the operations specified by an interface. A data
structure is an implementation of an abstract data type, consisting of both a representation
of state together with algorithms that implement the ADT’s operations. More generally, algo-
rithms themselves can be viewed as implementations of interface operations.

Throughout this course, we will use the term interface in this broad sense. Some interfaces
describe data structures, while others describe collections of operations or algorithmic build-
ing blocks. In all cases, the key idea is the same: algorithms are written against interfaces, not
implementations.

Remark: Why Interfaces Matter for Algorithms

Writing algorithms against interfaces allows us to reason about them independently of
low-level implementation details. An algorithm depends only on the behavior promised
by the interface it uses, not on how that behavior is realized internally.

This separation supports several important goals. First, it enables modularity: imple-
mentations can be improved or replaced as long as they continue to satisfy the same
interface. Second, it simplifies reasoning: correctness arguments and cost analyses can
be carried out assuming only the interface guarantees. Finally, it promotes reuse: the
same algorithm can be applied to multiple implementations that satisfy the interface.

These benefits are especially important in parallel algorithms, where we want to express
parallelism and analyze cost without reasoning about unnecessary low-level details.

2.2 The Sequence ADT
The central abstraction used throughout this course is the sequence abstract data type. Nearly
all of the parallel algorithms we study are expressed in terms of sequences and operations on
them. Rather than reasoning about arrays, pointers, or memory layouts directly, we design
algorithms against the sequence interface.

Definition: Sequence

A sequence of length n over elements of type T is an ordered collection of values that
can be viewed as a mapping from the indices {0, 1, . . . , n −1}→ T .

Intuitively, a sequence represents an ordered collection of elements that can be accessed by
position. The definition above captures the essential properties of sequences that algorithms
rely on: a well-defined length and a notion of indexing. It does not prescribe how the sequence
is represented in memory. The sequence ADT is then defined as

5

Interface: The Sequence ADT

A sequence represents a finite, ordered collection of elements that supports efficient
(i.e., constant-time) random access. Conceptually, a sequence behaves like an array or
a contiguous view into an array.

Sequence Access:

• nth : (S : sequence<T>, i : int) -> T
Return the i th element (zero-indexed) of the sequence S .

• length : (S : sequence<T>) -> int
Return the length (number of elements in) the sequence S .

The nth function is usually abbreviated as S[i], and length is abbreviated as |S|.

Subsequence Views:

• subseq : (S : sequence<T>, i : int, k : int) -> sequence<T>
Returns a view of the subsequence of S starting at index i with length k .

The function subseq does not copy elements, otherwise it would be inefficient.

When we write functions that take a sequence, we only rely on the interface. Such functions
are generic: they work for any implementation that supports random access and subseq.

split_mid We will implement many divide-and-conquer algorithms which will need to take a
sequence and split it into two equal sized halves. For this reason, we define a helper function
split_mid(S) which returns (subseq(S, 0, ⌊|S |/2⌋), subseq(S, ⌊|S |/2⌋, ⌈|S |/2⌉))

2.2.1 A concrete sequence: ArraySequence

We now fix a concrete sequence representation that we will use whenever an algorithm needs
to create a sequence. For all of the algorithms we design in this class, we will assume that any
sequences we explicitly construct are ArraySequence<T> values, a sequence backed by a con-
tiguous array of elements of type T which also stores its own length. We will assume that this
is the type returned by our pseudocode sequence comprehension. We also define the function
tabulate, where tabulate(f, n) returns the sequence [f(x) for x in 0...n-1], i.e.,
the sequence containing f (0), f (1), . . . , f (n −1) in that order.

• tabulate : ((int -> T), int) -> ArraySequence<T>

For efficiency, the subseq function would not make a new array and copy the elements of the
subsequence. Instead, it would simply store a reference to the underlying ArraySequence<T>
as well as a “left” and “right” position, indicating the boundaries of the slice. With this concrete
implementation, all operations, nth, length, subseq take O (1) time.

We will also use Python-like list-comprehension syntax in our pseudocode since it is nice and
recognizable, so in place of tabulate(f, n) we may write

parallel [f(i) for i in 0...n-1]

6

Remark: Mutation and the Sequence ADT

The sequence ADT, as presented here, is purely functional: none of the operations mu-
tate the sequences. This design choice is intentional. Pure, functional interfaces are
significantly easier to reason about, especially in the presence of parallelism, since they
avoid interference between concurrent computations.

That said, mutation is not forbidden. In this course, we freely use mutable data struc-
tures and in-place updates when designing sequential algorithms, where such reasoning
is straightforward. However, when designing parallel algorithms, we will almost always
work with functional sequence operations, and only resort to mutation in rare cases
where it is truly necessary.

This discipline reflects a broader principle: mutation is a powerful tool, but one that
must be used carefully. By default, we favor functional abstractions that make correct-
ness and parallel cost reasoning clean and modular.

3 Abstraction: Models of Computation and Cost Models

3.1 Sequential Cost Model: Word RAM
Before discussing parallel algorithms, it is helpful to recall the cost model we implicitly use
when analyzing sequential algorithms. Throughout most of computer science, this baseline
model is the word RAM model. Most algorithm analysis you did in previous classes was prob-
ably in the word RAM model, even if you didn’t call it that explicitly.

Definition: Word RAM

In the word RAM (Random Access Machine) model, computation proceeds sequentially,
and the machine operates on fixed-size machine words which are w -bits long.

• We assume that the machine word size is large enough to store any input value and
any index into the input (in particular, w =Ω(log n) for inputs of size n).

• Each basic operation on w -bit values, such as arithmetic operations, comparisons,
branching, and reading or writing memory, costs O (1).

• Memory is assumed to be randomly accessible, meaning that accessing any memory
location takes constant time.

This model closely reflects the behavior of real machines at a high level, while remaining simple
enough to support asymptotic analysis. When we say that a sequential algorithm runs in O (n)
time, we typically mean that it performs O (n)word-RAM operations.

The word RAM model provides a clear and stable notion of cost for sequential computation.
However, it does not directly extend to parallel algorithms, where multiple computations may
proceed simultaneously. In the following sections, we develop abstractions and cost measures
that allow us to reason about parallel computation in a similarly machine-independent way.

7

Remark: Why word RAM?

The word RAM much better models the capabilities of real computers, which naively
perform fixed-precision arithmetic. For example, trying to compute large numbers in
languages like C, Java, C++, etc., will quickly lead to overflow, and doing so in Python
will lead to large numbers which are neither constant time not space to operate on.

A naïve unit-cost RAM model that allows arithmetic on arbitrarily large integers (i.e. un-
limited precision arithmetic) is also unrealistically powerful: such a model can perform
computations that are believed to be intractable, for example solving NP-hard problems
in polynomial time. Restricting computation to fixed-size machine words avoids this is-
sue and better reflects the capabilities of real computers.

3.2 Nested Parallel Programs
Our model of parallelism will be an abstraction at a higher level than an actual parallel com-
puter, hiding details such as cores and scheduling. Instead, we model parallelism with nested
fork-join parallelism. We extend the word RAM model with the ability to fork: where the cur-
rent computation splits into multiple child computations that are eligible to be run in parallel.

Definition: Fork–Join RAM

The Fork–Join RAM is a model extending the word RAM with structured parallelism.
Computation proceeds via constant-time word-RAM operations and fork operations.

A fork operation creates a fixed number of child computations that may execute in par-
allel. The parent computation suspends at the fork point and resumes only after all of its
child computations have completed; this resumption point is called the join. Child com-
putations may themselves perform fork operations, allowing parallelism to be nested.

Remark: Nested parallelism as an abstraction

Early work on parallel algorithms used the PRAM (Parallel RAM) model, which requires
algorithms to be written for a fixed number of processors. This forces the programmer to
explicitly decide which computations execute on which processor at which times (a task
known as scheduling). While powerful, this makes many otherwise simple algorithms
unnecessarily complicated. Nested parallelism provides a higher-level abstraction that
allows algorithms to express parallel structure without specifying how computations are
assigned to processors; this complexity is instead handled by the implementation.

Abstracting away these kinds of details about how algorithms are mapped to actual hard-
ware is not unusual, in fact, it is central to how we program! For example, when writ-
ing code we use variables rather than manually managing memory addresses. We write
int x = 5 without specifying where in memory the value is stored; the compiler and
operating system handle those details for us. Nested parallelism plays an analogous role
for parallel algorithms: it lets us describe what can run in parallel, while leaving how it
is carried out on the actual processor cores to the underlying system.

8

3.2.1 Parallelism in our pseudocode

In our pseudocode, we express fork–join parallelism using the parallel keyword. Concep-
tually, a parallel expression corresponds to a fork in the Fork–Join RAM model: the current
computation forks into child computations to evaluate the elements of the expression in par-
allel, and automatically joins once all have completed. Syntactically, the parallel keyword
can be applied to tuples or sequence comprehensions.

Parallel tuple evaluation We can evaluate a tuple of expressions in parallel with the parallel
keyword. For example, to compute the functions f (a) and g (b) in parallel, we could write

x, y = parallel (f(a), g(b))

Parallel sequence comprehension This construct evaluates f (x) for all x ∈ A in parallel and
returns their results as a sequence in the same order once all have completed.

parallel [f(x) for x in A]

In other words, this is equivalent to the higher-order functionmap(f, A)wheref : U → V is
a pure function and A is asequence<U>, using syntax resembling Python’s list comprehension.

Remark: Parallel loops

In practice, parallel programs, especially in systems languages such as C++, often use
constructs like parallel loops that execute side-effecting code across many iterations
concurrently. These are extremely powerful and widely used in production systems.
However, reasoning about the correctness of such code requires careful attention to
shared state, interference, and synchronization.

In this course, we will largely avoid explicit side-effecting parallel loops. Instead, we
focus on structured parallelism and higher-level abstractions that allow algorithms to be
expressed and reasoned about cleanly and deterministically. Imperative parallel loops
may be used internally by library implementations, but they will not be a primary tool
for expressing algorithms in this class.

3.3 A parallel cost model: Work and Span
In the sequential setting, the word RAM model gives us a clear notion of cost: an algorithm’s
running time is the number of constant-time operations it performs. Parallel algorithms re-
quire a refinement of this idea, since multiple computations may proceed simultaneously. Mea-
suring the running time of a parallel program would seem to require knowledge of the number
of processors P it runs on, making the running time a function of P . Doing so would again re-
quire thinking about machine-specific details and scheduling, which we would prefer to avoid.
An elegant solution to this is to measure not just one quantity, but two. We describe the cost of
a parallel computation using two quantities: its work and its span.

Intuitively, work measures the total amount of computation performed, while span measures
the length of the longest chain of dependencies that must be executed sequentially. These two
quantities capture complementary aspects of parallel performance.

9

3.3.1 Work

Definition: Work

The work of a computation is the total number of constant-time operations it performs,
counting all operations across all parallel branches. In other words, work measures how
much computation would be performed if all parallelism were executed sequentially.

For example, when two computations are executed in parallel, the total work is the sum of the
work of the two computations. Sequential composition likewise adds work. Work therefore
generalizes the familiar notion of running time from the word RAM model to parallel programs.

3.3.2 Span

Definition: Span

The span of a parallel computation measures its inherent sequentiality. It is defined as
the length of the longest chain of computations that must occur one after another due
to dependencies. In other words, span measures the running time of the algorithm if it
had infinitely many processors with no scheduling overhead.

When two computations are executed sequentially, their spans add. When they are executed
in parallel, their spans combine by taking the maximum, since the two computations may pro-
ceed concurrently. The span thus captures the critical path through the computation.

This structural approach allows us to analyze parallel algorithms compositionally, using simple
recurrences that closely mirror the algorithm itself.

3.4 Example: Parallel Sum
Consider the following simple implementation of a parallel algorithm that computes the sum
of an integer sequence (i.e., in fancy words, a reduction using the plus operation).

Algorithm: Parallel Sequence Sum

fun sum(S : sequence<int>) -> int:
match length(S) with:

case 0: return 0 // Empty sequence
case 1: return S[0] // Singleton sequence
case _:

L, R = split_mid(S) // Helper function
Lsum, Rsum = parallel (sum(L), sum(R))
return Lsum + Rsum

Work analysis We can model the work of this algorithm using a recurrence relation. Let
Wsum(n) be the work required to evaluate sum(S) for a sequence of length n . The function
performs constant work in the base cases (when n ≤ 1). Otherwise, it performs constant work

10

to do split_mid and to sum the results, plus the work of two recursive calls, each of size n/2
(ignoring rounding errors). Thus we can write the recurrence

Wsum(n) =

¨

O (1) if n ≤ 1,

2 ·Wsum(n/2) +O (1) otherwise.

We will review solving recurrence relations in depth next lecture, but for now, you might recall
from previous classes that we can solve this recurrence by unrolling it to get

Wsum(n) = c
�

1+2+4+ . . .+
n

2
+n
�

=O (n).

Span analysis We can model the span similarly. Let Ssum(n) denote the span of sum(S) for
a sequence of length n . The algorithm performs constant work plus a parallel call to two re-
cursive problems of size n/2. The span of the algorithm is the maximum of the two parallel
recursive calls, which have span S (n/2), but since they are of the same size, its just S (n/2).
Therefore, we get a recurrence relation like

Ssum(n) =

¨

O (1) if n ≤ 1,

Wsum(n/2) +O (1) otherwise.

Unrolling this recurrence relation, we get a solution of Ssum(n) =O (log n).

Remark: Nested Fork–Join and Work–Span are the right abstraction

Work and span together provide a machine-independent description of parallel cost.
Work captures total effort, while span captures available parallelism. Any parallel ex-
ecution must take time at least proportional to the span, regardless of the number of
processors available.

Suppose we run a computation with work W and span S on a machine with P proces-
sors. Even with perfect load balancing, the computation must take at leastΩ(W /P) time,
since a total of W work must be performed. Moreover, the span S is by definition a lower
bound on the running time, since the longest chain of dependent computations must
execute sequentially. Thus, any execution must take time at least

Ω

�

max
�

W

P
, S
��

.

A fundamental result in parallel algorithms, Brent’s Theorem, shows that this lower
bound is essentially achievable: a computation with work W and span S can be exe-
cuted on a P -processor machine in time

O
�

max
�

W

P
, S
��

.

We will prove this theorem later in the course. For now, it suffices to note that this result
vindicates our use of nested fork–join parallelism and work–span analysis: algorithms
designed at this level of abstraction can be realized on concrete machines with asymp-
totically optimal performance!

11

	Imperative versus Functional Programming
	Functions: Imperative versus Pure
	Imperative versus Functional Data Structures
	Persistent Data Structures

	Abstraction: Interfaces and ADTs
	Interfaces and Abstract Data Types
	The Sequence ADT
	A concrete sequence: ArraySequence

	Abstraction: Models of Computation and Cost Models
	Sequential Cost Model: Word RAM
	Nested Parallel Programs
	Parallelism in our pseudocode

	A parallel cost model: Work and Span
	Work
	Span

	Example: Parallel Sum

