
15-210: Parallel and Sequential Data Structures and Algorithms

Dynamic Programming I

Reducing a problem to smaller versions of itself is an extremely common technique in algo-
rithm design. We have already used this technique when studying divide-and-conquer- and
contraction-based algorithms. These typically manifest as recursively defined computations.
In this lecture we will learn about the third, and arguably most powerful variant of this tech-
nique, called dynamic programming.

Like divide-and-conquer and contraction, dynamic programming involves reducing a problem
to smaller versions of itself. The key difference will be that for dynamic programming problems,
we will find ourselves inefficiently solving the same smaller problems repeatedly. Addressing
this by avoiding the repeated work leads to the technique of dynamic programming.

1 Motivating Example: Coin Change
There are several variants of the coin change problem. We will look at three of them and see
how they are all slight variations of the same core theme. For all three variants, dynamic pro-
gramming will be the key to solving them efficiently.

Problem: Coin Change (Feasibility)

You are given a description of a currency ($) which has denominations c1, . . . , cn and
asked: is it possible to make exactly $V . Denominations may be used multiple times.

We call this the “feasibility” (or “decision”) version of the problem because we are just asking a
true/false question, whether it possible to make the desired amount. For example, suppose our
denominations were 2, 5, 10. The answer to, “can I make $6” is true, because I can do 2+2+2,
and for $12 its also true because I can write 2+10 or 2+5+5. On the other hand, the answer is
false for $1 and false for $3.

1.1 Subproblems
To begin to solve this problem, let us think in terms of reducing it to smaller versions of itself.
Continuing with the set of denominations [2, 5, 10], and suppose I was asked if its possible to
make a total of $42. Well, we have a $2 coin, so if it were possible to make $40 somehow, then
it would also be possible to make $42. Similarly, if it were possible to make $37, we could add a
$5 coin to make $42, and lastly, if we could make $32 we could add a $10 coin.

In other words, a way to express the answer to the problem “can I make $42” is equivalent to:
“can I make $40, or can I make $37, or can I make $32”. If any of those are true, the answer is
true, otherwise its false. This is how, just like in divide-and-conquer and contraction, we have
managed to reduce the problem to smaller version(s) of itself! This is the core part, and indeed,

1

for more complex problems, often the hardest part of dynamic programming: we need to de-
fine a set of subproblems, whose solutions can be used to solve the original problem at hand.
So, in our case, given the initial problem of making $V, we might define the set of subproblems:

Possible(v) :=
¨

True if it is possible to make exactly $v ,

False otherwise.
for all 0≤ v ≤V .

1.2 Recurrence Relation
Armed with our subproblems, we need to solve them. As is the case with divide-and-conquer
and contraction, our other reduce-to-smaller-version-of-the-problem techniques, this natu-
rally leads to a recursive solution to the problem, since we want to solve the subproblems by
combining the answers to smaller subproblems. Before being implemented as code, it is often
helpful to first write down the solution in mathematics, as a recurrence relation. We have al-
ready dealt with recurrence relations heavily in this class, as tools to analyze costs, but that is
not their only use. We will also use them to specify solution to dynamic programming problems
in a code-independent, language-independent way.

In plain words, we intuited earlier that to solve the problem of making $v , we had to consider
the possible denominations c1, . . . , cn and ask whether it was possible to make $(v−c1), or make
$(v − c2), etc. Written as a recurrence relation, our solution therefore ends up looking like

Possible(v) =















True if v = 0,

∨

i∈[n]
ci≤v

Possible(v − ci) otherwise

Remember that the big ∨ operator means logical or, so it is asking whether any of its operands
are true, and if so, the answer is true, otherwise its false. We limit the operands to those ci such
that ci ≤ v to avoid infinite recursion by going negative and missing the base case.

1.3 A recursive algorithm
If we were to translate this recursive solution into code it might look something like this if we
write it in a simple imperative style.

fun coin_change(c : sequence<int>, V : int) -> bool:
fun possible(v):

if v == 0: return True
else:

answer = False
for denomination in c:
if denomination <= v:

answer ← answer or possible(v - denomination)
return answer

return possible(V)

2

This inner aggregation could also be written using higher-order functions to be more functional
and introduce opportunities for parallelism, but we avoid that here because it obfuscates the
recurrence and the dependency structure that we are trying to emphasize, and is less general-
izable to other problems.

fun coin_change(c : sequence<int>, V : int) -> bool:
fun possible(v):

return v == 0 or any(map(fn(x) => (x <= v and possible(v - x)), c))
return possible(V)

any is a helper function that returns True if any of the elements of the given boolean sequence
are True. It can be implemented reduce(or, False, S).

Both of these correctly solve the problem, but with one major drawback: their cost is expo-
nential in V . So, even for modest values of V , this code will possibly never terminate in a rea-
sonable amount of time. To see why, we can look at a graph of the recursive calls made by the
algorithm. Consider our running example denominations of 2, 5, 10 and the goal to make $42.
The subproblem for v = 42 recursively solves the subproblems for 40, 37, 32, and so on.

One thing to notice about this tree, right off the bat, is that it is growing exponentially, by a
factor of three on each level. In fact, the runtime of evaluating this recurrence is aboutΘ(1.27V),
indeed exponential in V .

2 Efficient Evaluation of Dynamic Programs
If we take a close look at the tree, we should see a huge optimization opportunity. Although
the tree is evaluating an exponential number of subproblems, there is huge redundancy among
them! We can already see by level three that the subproblem for v = 30 is being evaluated on
both sides of the tree, and so are the subproblems for v = 35 and v = 32.

Indeed, the way we defined the subproblems, there are only 43 of them (Possible(v) for 0≤
v ≤ 42), but if we were to try to draw out the entire thing, this tree will contain an insane 34833
subproblems! Our goal is to improve the computation so that each subproblem is computed
at most once.

3

This is the essence of dynamic programming. In dynamic programming, we will program sim-
ple recursive solutions to problems, which would ordinarily take exponential time due to them
needing to repeatedly make the same recursive calls. However, we speed these algorithms up
by reusing, or “sharing”, the results of our function.

Idea: Dependency graph

The recurrence defines a dependency graph in which Possible(v) depends only on
values Possible(v − ci), i.e., for smaller values of v . This graph is acyclic and totally
ordered by v , which suggests evaluating the subproblems in increasing order of v .

There are two ways we can implement dynamic programs. The first one is referred to as bottom-
up dynamic programs. In bottom-up dynamic programming, we will iteratively computing the
results of subproblems in order from smaller to larger, using the smaller ones to find solutions
to larger and larger subproblems until we have have enough to solve the original problem.

The other implementation method is called top-down dynamic programming, also known as
memoization. The core idea for memoization is that we will maintain a cache of results while
we compute various results from our recursive function, which stores all the past results that
we have computed.

Every time we call our recursive function, we will first check this cache to see if we have already
performed this call. If so, we can return the result in constant time. Otherwise, we will compute
the result, and also store it in the cache for later use.

Remark: Dynamic Programming as “Clever Brute Force”

One helpful way to think about dynamic programming is as a form of clever brute force.

The recursive recurrence above is essentially a brute-force search: to decide whether we
can make $v , we try every possible final coin and recursively check whether the remain-
ing amount can be made. This approach explores the entire solution space and applies
no heuristics or pruning. As a result, its correctness is immediate: if a solution exists,
the recursion will eventually find it.

The inefficiency comes from solving the same subproblems repeatedly. Dynamic pro-
gramming does not change what subproblems are considered; instead, it changes how
they are evaluated. By ensuring that each subproblem is solved only once, we turn an
exponential-time brute-force search into an efficient polynomial-time algorithm.

4

2.1 Bottom-up evaluation
In a bottom-up dynamic programming approach, we solve subproblems in increasing order of
size, ensuring that whenever we compute the value of a subproblem, all of the smaller sub-
problems it depends on have already been solved.

In the coin change problem, the subproblems are indexed by the value v . The recurrence for
Possible(v) depends only on values Possible(v − ci) for ci ≤ v , which are strictly smaller
than v . This means we can safely compute the table in increasing order from 0 up to V .

We maintain an array possible where possible[v] stores the answer to the subproblem
Possible(v). Initially, all entries are undefined (⊥). Their values are then computed in order
of smallest to largest value of v by implementing the recurrence relation.

Algorithm: Bottom-up coin change

fun coin_change(c : sequence<int>, V : int) -> bool:
possible = [⊥ for v in 0...V]

for v in 0...V:
if v == 0:

possible[v] ← True
else:

answer = False
for denomination in c:

if denomination <= v:
answer ← answer or possible[v - denomination]

possible[v] ← answer
return possible[V]

Remark: Computing the final answer

Note that the final answer is stored in possible[V]. In general, it is not necessarily the
case that the answer to the original problem is exactly one of the subproblems. It might
require some further postprocessing to determine the final answer by aggregating many
subproblems. We will see some examples of this later in the course.

2.2 Top-down evaluation
An alternative way to evaluate the same recurrence is a top-down approach, also known as
memoization. Instead of explicitly filling in the table from smallest to largest subproblem, we
write a recursive function that mirrors the expoential-time recursive algorithm, but with an
added cache of the results of subproblems as they are computed.

Conceptually, this approach starts by attempting to solve the original problem Possible(V)
and recursively explores smaller subproblems as needed. Whenever the value of a subproblem
is computed for the first time, it is stored in the memoization cache. Subsequent calls reuse the
cached result instead of recomputing it.

5

Algorithm: Top-down coin change

fun coin_change(c : sequence<int>, V : int) -> bool:
memoized = [⊥ for v in 0...V]

fun possible(v):
if memoized[v] == ⊥:

answer = False
for denomination in c:

if denomination <= v:
answer ← answer or possible(v - denomination)

memoized[v] ← answer
return memoized[v]

return possible(V)

Remark: Functional vs. Imperative Dynamic Programming

In this lecture, we have presented dynamic programming algorithms using mutable se-
quences and loops, which makes the flow of computation and the cost analysis clear.

The same algorithms can also be written in a purely functional style (i.e., without mu-
tation). For example, a top-down dynamic program can be implemented as a recursive
function that takes and returns both a persistent memo table and result, rather than mu-
tating the table in place. Similarly, bottom-up evaluation can be expressed using a fold
operation on a persistent data structure that stores the subproblems.

fun coin_change(c : sequence<int>, V : int) -> bool:
fun possible(table : PersistentDict<int,bool>, v : int)

-> PersistentDict<int,bool>:

answer = any(map(fn (x) => (x <= v and
find(table, v - x) == SOME(True)), c))

return insert(table, v, answer)

table = fold(possible, {0: True}, 1...V)
return find(table, V) == SOME(True)

The above code implements the bottom-up coin change algorithm using purely func-
tional code. Compared to the imperative implementation however, it:

• requires a substantially more complicated data structure for storing subproblems, e.g..,
a persistent balanced binary search tree, instead of an array

• has higher cost since insert and find with a balanced binary search tree will cost
O (log V) instead of O (1)

That said, when implementing dynamic programs in a functional language such as SML,
you are free to choose the style you find most natural, as long as your implementation
correctly follows the intended recurrence.

6

3 Cost Analysis
We now analyze the cost of the dynamic programming solutions. For simplicity, we begin with
the bottom-up version, which has a straightforward cost analysis. We then explain why the
top-down (memoized) version has the same asymptotic cost, even though this is less obvious
from the code.

Throughout, let:

• V be the target value,

• n be the number of denominations.

3.1 Bottom-up evaluation
Recall the bottom-up algorithm:

• We compute possible[v] for all v = 0, 1, . . . , V .

• For each value v , we iterate over all n denominations and perform constant work per de-
nomination.

Claim: Cost of bottom-up coin change

The cost of evaluating the coin change problem with n coins to make value $V using the
bottom-up strategy is Θ(V n).

Proof. There are V + 1 subproblems. For each subproblem, we scan all n denominations and
perform constant work. Therefore, the total work is Θ(V n).

The space usage is also Θ(V), since we store one boolean value for each subproblem.

The bottom-up strategy makes the analysis rather direct. Even without understand dynamic
programming, we see that the algorithm simply has two nested loops, one evaluating the V +1
subproblems, and one that spends O (n) time evaluating each particular subproblem.

3.2 Top-down Evaluation (Memoization)
The top-down algorithm looks quite different: it is written as a recursive function and may
appear to explore an exponential recursion tree. However, the memoization ensures that this
does not actually happen.

Idea: Memoization

Although the recursive function possible(v) may be called many times, it is com-
puted at most once for each value of v . The first time possible(v) is called, it com-
putes the answer by recursively calling smaller subproblems. The result is then stored
in memoized[v]. Any future call to possible(v) returns immediately in O (1) time.

7

Claim: Cost of top-down coin change

The cost of evaluating the coin change problem with n coins to make value $V using the
top-down strategy is Θ(V n).

Proof. There are V + 1 subproblems, one for each value v ∈ 0, . . . , V . Each subproblem, when
computed for the first time, performs O (n) work to iterate over the denominations. All other
calls return in constant time. Thus, the total work across the entire execution is Θ(V n).

Remark: Top-down versus bottom-up

Both approaches solve exactly the same set of subproblems and perform the same total
amount of work asymptotically: Θ(V n).

The difference is how the subproblems are evaluated:

• Bottom-up evaluates all subproblems in a fixed order, regardless of whether they are
needed. This also means that the programmer needs to correctly determine the order
and integrate it into the code.

• Top-down evaluates only the subproblems that are reachable from the original query,
and figures out the correct order automatically, while memoization prevents redun-
dant work.

For problems like coin change, where almost all subproblems are eventually needed, the
two approaches have essentially identical cost. In other problems, top-down evaluation
may avoid computing many unnecessary subproblems and might be more efficient.

4 Reconstructing a Solution
So far, our dynamic programming algorithm only outputs the value of the solution: is it possible
to make exactly $V ? (a boolean value). Often, however, we want more: we want to recover an
actual solution, such as the specific coins used.

There are two standard techniques for reconstructing a solution from a dynamic program. They
differ in their space–time tradeoffs. Both ideas apply equally well to bottom-up and top-down
dynamic programming.

4.1 Method 1: Storing Decisions During DP
The most direct approach is to store additional information while computing the values of the
subproblems. For each subproblem Possible(v), we record which choice made the value
true. For example, we can store a denomination ci such that

Possible(v − ci) = True.

This can be done by maintaining a second array which stores which decision lead to the result.

8

Algorithm: Reconstructing the list of coins (decision method)

fun get_coins(c : sequence<int>, V : int) -> option<sequence<int>>:
possible = [False for v in 0...V]
choice = [⊥ for v in 0...V]

for v in 0...V:
if v == 0:

possible[v] ← True
else:

for denomination in c:
if denomination <= v and possible[v - denomination]:

possible[v] ← True
choice[v] ← denomination

if not possible[V]: return NONE

// reconstruct solution
solution = []
v = V
while v > 0:

denomination = choice[v]
solution ← solution + [denomination]
v ← v - denomination

return SOME(solution)

This usesΘ(V) additional space and time, and hence doesn’t affect the overall asymptotic cost.

4.2 Method 2: Backtracking
An alternative approach is to reconstruct a solution after the fact, using only the values of the
subproblems themselves. Suppose we have already computed the array Possible(v). To re-
construct a solution for value v , we search for a denomination ci ≤ v such that

Possible(v − ci) = True.

Once we find such a coin, we include it in the solution and continue with v − ci remaining.

Algorithm: Reconstructing the list of coins (backtracking method)

fun get_coins(c : sequence<int>, V : int) -> option<sequence<int>>:
possible = [⊥ for v in 0...V]

for v in 0...V:
if v == 0:

possible[v] ← True
else:

possible[v] ← False
for denomination in c:

9

if denomination <= v:
possible[v] ← possible[v] or possible[v - denomination]

if not possible[V]: return NONE

// reconstruct solution
solution = []
v = V
while v > 0:

for denomination in c:
if denomination <= v and possible[v - denomination]:

solution ← solution + [denomination]
v ← v - denomination

return SOME(solution)

This method avoids storing extra information, but reconstruction may take more time since it
has to essentially reevaluate the recurrence again.

Remark: Storing decisions versus backtracking

Both versions compute the same subproblems. The difference lies entirely in when we
decide which choices matter:

• Store decisions early: more space, faster reconstruction.

• Recompute decisions later: less space, slower reconstruction.

This illustrates a recurring theme in dynamic programming: the subproblems encode all
solutions implicitly, and reconstruction is simply a matter of extracting one of them.

5 Counting and Optimisation Problems
Dynamic programming is predominantly used to solve three kinds of problems: feasibility,
counting, and optimization. Most (but not all) algorithmic problems fall into one of these three
categories. The overall idea is exactly the same:

• Define a suitable set of subproblems

• Write a recurrence relation which solves a subproblem in terms of smaller subproblems

• Analyze the cost by determining the number of subproblems and the cost per subproblem

The power of dynamic programming lies primarily in choosing the right subproblems and writ-
ing the correct recurrence. Once these are established, the implementation, cost analysis, and
reconstruction techniques follow the same patterns as before. For this reason, in the following
variants we focus on the subproblem definitions and recurrences, and omit repeated code.

10

5.1 The optimization problem: fewest possible coins
Here, we consider an optimization version of the problem.

Problem: Coin Change (Optimization)

Given denominations c1, . . . , cn in some currency ($), what is the fewest number of coins
needed to make exactly $V ?

As before, we approach this problem by reducing it to smaller subproblems. The key difference
is that instead of asking whether a solution exists, or counting all possible solutions, we are now
trying to find the best solution according to some objective.

To make exactly $v , we first choose a coin to use. If we choose denomination ci , then we must
make the remaining amount $(v − ci) somehow. How should this amount be made? Of course,
using the fewest possible coins, which is just a smaller version of the original problem! We there-
fore define:

MinCoins(v) =minimum number of coins needed to make $v.

If we decide to include a copy of the coin ci , we use

1+MinCoins(v − ci)

coins in total. Different choices of the first coin may lead to solutions using different numbers
of coins. Since we want the fewest coins overall, we should brute-force all possible coins ci such
that ci ≤ v and take the one that minimizes the total number of coins. This leads directly to the
following recurrence.

MinCoins(v) =























0 if v = 0,

∞ if ci > v for all i ,

min
i∈[n]
ci≤v

�

1+MinCoins(v − ci)
�

otherwise.

Note that if no coins can be used to make v , we define MinCoins(v) =∞. This ensures that it
will never be selected as the minimum. This is a common practice for optimization-based dy-
namic programming algorithms where there might not be a valid solution at all. The algorithm
again runs in Θ(V ·n) time and Θ(V) space.

5.2 The counting problem: how many ways?
Lastly, we now consider a counting variant of the coin change problem.

11

Problem: Coin Change (Counting)

Given denominations c1, . . . , cn in some currency ($), how many distinct ways are there
to make exactly $V ? We count ordered sequences of coins, by which we mean that using
denominations {2, 5}, the solutions 2+5 and 5+2 are counted as distinct.

The key idea is the same. To make $42, if I have a $2 coin, then I can make $40 and add a $2
coin. If I have a $5 coin then I can make $37 and add a $5 coin. We therefore define subproblems
similarly, in terms of smaller values of v

CountWays(v) = number of ways to make $v, for all 0≤ v ≤V .

To count the number of ways to make $42, we can case on the last coin used, say $2, $5, or
$10, and consider the number of ways to make $40, $37, or $32 respectively. Each of these give
a valid way to make $42, so we simply add the number of ways to make these amounts. The
recurrence therefore mirrors the feasibility version, but replaces logical or with addition:

CountWays(v) =















1 if v = 0,
∑

i∈[n]
ci≤v

CountWays(v − ci) otherwise.

The cost analysis is identical to the feasibility version: Θ(V ·n) time and Θ(V) space.

Remark: The structure of dynamic programming

As with the previous variants, the structure of the dynamic program is the same: we
reduce the problem to smaller values of v and combine the results using an appropriate
operation: and/or for feasibility, sum for counting, and min/max for optimization.

Remark: Difficulty of feasibility versus optimisation versus counting

In general, feasibility problems are the easiest to solve, as we only have to determine
whether there exists some valid solution at all, not find the best one. It is strictly eas-
ier than an optimization or counting problem since, if we could solve the optimisation
problem, we could immediately determine feasibility by checking that the answer is not
∞ or−∞, and of course if we can solve the counting problem, we could check feasibil-
ity by checking whether or not the answer is zero.

Similarly, optimization problems are typically easier than counting problems. Both gen-
erally involving searching the entire solution space, where one finds the best solution
and the other adds up how many. The primary difference is that it doesn’t hurt an opti-
mization problem to consider a solution multiple times, but for a counting problem, we
must be careful to avoid double counting or it changes the answer. So, generally:

Feasibility ≪ Optimization ≪ Counting

12

	Motivating Example: Coin Change
	Subproblems
	Recurrence Relation
	A recursive algorithm

	Efficient Evaluation of Dynamic Programs
	Bottom-up evaluation
	Top-down evaluation

	Cost Analysis
	Bottom-up evaluation
	Top-down Evaluation (Memoization)

	Reconstructing a Solution
	Method 1: Storing Decisions During DP
	Method 2: Backtracking

	Counting and Optimisation Problems
	The optimization problem: fewest possible coins
	The counting problem: how many ways?

