
Chapter 17

Introduction

If we were to identify the most fundamental ideas in computer science, we would probably
end up converging on a list that includes abstract data types (ADTs) and the data structures
used to implement them. Unlike an algorithm the data structures need to balance the cost
of different functions within the ADT interface, often involving a tradeoff.

This part covers an ADT that mimics the mathematical concept of a sequence.

ADT for Sequences. Recall that an ADT is defined in terms of an interface consisting of a
collection of functions (and possibly values) on a given abstract type, and without reference
to the implementation. ADT Chapter defines such an interface for sequences, specifying
the type and semantics for each of the functions. Many of the functions we define, such as
map, reduce, filter and scan , are particularly useful in developing parallel algorithms. The
chapter also covers a shorthand syntax we use in this book for these functions.

Cost Specifications for Sequences. Beyond the interface itself we need to know some-
thing about the costs of each of the functions. As discussed in an earlier chapter , a data
type can have many different implementations with different asymptotic costs, and the
idea of a cost specification is to capture the cost of a class of implementations, without
reference to the actual implementation. In a cost specification, the costs (work and span)
for each function are defined asymptotically as a function of size (number of elements, in
the case of sequences). Costs Chapter covers three different cost specifications for the
sequence ADT. One is based on arrays, one on trees, and one on lists. None of these fully
dominate each other. In all cases some functions are asymptotically more expensive in one
and some in the other.

Implementations of Sequences. Cost specifications are meant to abstract away from the
specific implementation and be useful for users of an ADT, but someone needs to imple-
ment a data structure that abide by the bounds. In Array Sequences Chapter we describe
how to match the bounds for the array based cost specification. We start with a small set of

107



108 CHAPTER 17. INTRODUCTION

primitive operations with given costs and show how to implement the rest of the interface
within the bounds given by the specification.

In Examples Chapter , we present some examples using the sequences ADT, including
several algorithms for computing prime numbers. In Ephemeral Sequences Chapter , we
describe a reduced interface for sequences and a cost specification for the interface that
makes updates faster. The cost specification is different from the others in that it is non-
pure—costs will depend on the context.

1 Defining Sequences

From a mathematical standpoint it is possible to define sequences in several ways. One
way is to use set theory. Another way to take a more formal approach based on constructive
logic and define them inductively. Here we use basic set theory.

Mathematically, a sequence is an enumerated collection. As with a set, a sequence
has elements. The length of the sequence is the number of elements in the sequence.

Sequences allow for repetition: an element can appear at multiple positions. The po-
sition of an element is called its rank or its index. Traditionally, the first element of the
sequence is given rank 1, but, being computer scientists, we start at 0.

In mathematics, sequences can be finite or infinite but for our purposes in this book,
finite sequences suffice. We therefore consider finite sequences only.

We define a sequence as a function whose domain is a contiguous set of natural num-
bers starting at zero. This definition, stated more precisely below, allows us to specify the
semantics of various operations on sequences succinctly.

Definition 17.1 (Sequences). An α sequence is a mapping (function) from N to α with
domain {0, . . . , n− 1} for some n ∈ N.

Example 17.1. Let A = {0, 1, 2, 3} and B = {’a ’, ’b ’, ’c ’}. The function

R = {(0, ’a ’), (1, ’b ’), (3, ’a ’)}

from A to B has domain {0, 1, 3}. The function is not a sequence, because its domain has a
gap.

The function

Z = {(1, ’b ’), (3, ’a ’), (2, ’a ’), (0, ’a ’)}

fromA toB is a sequence. The first element of the sequence is ’a ’ and thus has rank 0. The
second element is ’b ’ and has rank 1. The length of the sequence is 4.

Remark. Notice that in the definition sequences are parametrized by the type (i.e., set of
possible values) of their elements.

Note. This mathematical definition might seem pedantic but it is useful for at least several
reasons.



1. DEFINING SEQUENCES 109

• It allows for a concise and precise definition of the semantics of the functions on
sequences.

• Relating sequences to mappings creates a symmetry with the abstract data types such
as tables or dictionaries for representing more general mappings.

Syntax 17.2 (Sequences and Indexing). As in mathematics, we use a special notation for
writing sequences. The notation

〈 a0, a1, . . . , an−1 〉

is shorthand for the sequence

{(0, a0), (1, a1), . . . , ((n− 1), an−1)} .

For any sequence a

• a[i] refers to the element of a at position i,

• a[l · · ·h] refers to the subsequence of a restricted to the position between l and h.

Example 17.2. Some example sequences follow.

• For the sequence a = 〈 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 〉, we have

– a[0] = 2,
– a[2] = 5, and
– a[1 · · · 4] = 〈 3, 5, 7, 11 〉.

• A Z→ Z function sequence:

〈 lambda x . x2,
lambda y . y + 2,
lambda x . x− 4

〉 .

Syntax 17.3 (Ordered Pairs and Strings). We use special notation and terminology for se-
quences with two elements and sequences of characters.

• An ordered pair (x, y) is a pair of elements in which the element on the left, x, is
identified as the first entry, and the one on the right, y, as the second entry.

• We refer to a sequence of characters as a string, and use the standard syntax for them,
e.g., ’ c0c1c2 . . . cn−1 ’ is a string consisting of the n characters c0, . . . , cn−1.

Example 17.3 (Ordered Pairs and Strings). • A character sequence, or a string: 〈 ’ s ’, ’ e ’, ’ q ’ 〉 ≡
’ seq ’ .

• An integer-and-string sequence: 〈 (10, ’ ten ’), (1, ’ one ’), (2, ’ two ’) 〉 .

• A string-and-string-sequence sequence: 〈 〈 ’ a ’ 〉 , 〈 ’nested ’, ’ sequence ’ 〉 〉 .


	Maximum Contiguous Subsequence Sum
	The Problem
	Brute Force
	Applying Reduction
	Auxiliary Problems
	Reduction to MCSSS
	Reduction to MCSSE

	Divide And Conquer
	A First Solution
	Divide And Conquer with Strengthening



