
Chapter 22

Ephemeral and Single-Threaded
Sequences

This chapter covers implementations of sequences that support constant work updates.

1 Persistent and Emphemeral Implementations

Persistent Data Structures. The implementations and the cost models that we have dis-
cussed so far are “non-destructive” in the sense that if we use a sequence, by for example,
passing the sequence to an operation such as map, update, or inject the sequence remains
the same after the operation completes. Such implementations are sometimes called pure
or persistent.

Persistence is generally a desirable property. Some algorithms benefit from persistence
and it is safe for parallelism. But persistence does come with a cost, because we are not
allowed to update data destructively in place. For example, in array sequences , the
update a (i, v) and inject a b operations require Ω(|a|) work because they have to copy the
sequence a. In tree sequences , update a b and inject a b require Θ(lg |a|) and Θ(lg |a|+lg |b|)
work, but in some algorithms this is still high.

Ephemeral Data Structures. Persistence is not always necessary. For example, an algo-
rithm may use a data structure in a “linear” fashion, where it uses or more precisely “con-
sumes” an instance of the data structure no more than once. Linearity is relatively common,
especially in sequential algorithms. For example, an algorithm may, at each step, consume
one instance of a data structure and create a new instance, which is then consumed in an-
other step. In such use cases, we may employ destructive updates in the implementation
of the data structure: because an instance is never consumed more than once, it is safe to
destruct or reuse it when making a new instance. We refer to an implementation of a data
structure that destroys existing instances as ephemeral.

149

150 CHAPTER 22. EPHEMERAL AND SINGLE-THREADED SEQUENCES

Disadvantages of Ephemeral Implementations. Even though they can be efficient, ephemeral
implementations have one important disadvantage: they are generally not safe for paral-
lelism. As an example, consider the following three sequences:

a = 〈 0, 1, . . . , n− 1 〉
b = 〈 (0, 0), (1, 2), (2, 4), . . . , (n− 1, 2n− 2) 〉
c = 〈 (0, 1), (1, 3), (2, 5), . . . , (n− 1, 2n− 1) 〉

Using ephemeral sequences, the result of the following piece of code, which injects the
sequence b and c into another sequence a is non-deterministic:

inject a b || inject a c.

This piece of code has as many as 2n distinct outcomes: the element at position i is either
the ith even number of ith odd number.

Ephemeral implementations can therefore make reasoning about the correctness paral-
lel algorithms challenging, because we have to consider an exponential number of possi-
bilities. An earlier chapter covers this topic in more detail. This does not mean, however,
that emphemeral data structures should be avoided at all cost. They are usually acceptable
in sequential algorithms. Even in parallel algorithms, it is sometimes possible to use them
in a structured fashion and establish that they don’t harm correctness.

2 Ephemeral Sequences

Constant Work Updates. We can create an ephemeral version of array sequences by
changing the update , inject , and ninject primitives to update the input array destructively.
For an update sequence of length m, the resulting implementation has the following im-
proved bounds:

• O(1) work and span for update,

• O(m) work and O(lg d) span for inject , where d is the degree of the of the update
sequence,

• O(m) work and O(1) span for ninject .

Note that this implementation is significantly more work efficient than the persistent one,
and thus can make a real difference in complexity if the algorithm performs many up-
dates.

3 Single-Threaded Sequences

Single-threaded sequence data structure offers a specific interface that can in some cases,
combine the best of ephemeral and persistence sequences. The data structure is persistent—
its functions have no externally visible effects—but its implementation internally uses be-
nign effects. These benign effects make the cost specification more subtle.

3. SINGLE-THREADED SEQUENCES 151

Example 22.1. Recall that the function update a (i, v) updates sequence a at location i with
value v returning the new sequence, and that inject a b updates sequence a using a se-
quence b of index-value pairs (each value is written to the corresponding index. Using
arrays costs, update requires Θ(|a|) work, and inject requires Θ(|a|+ |b|) work.

We can implement inject using update as follows.

inject a b = iterate update a (reverse b)

This code iterates over a making each of the updates specified in b. The problem, beyond
being completely sequential, is that each update does Θ(|a|) work so the total work is
O(|a| · |b|) instead of O(|a|+ |b|). The problem is that it is a waste to copy the sequence for
every update.

Data Type 22.1 (Single Threaded Sequences). For any element typeα, theα- single threaded
sequence (stseq) data type is the type Tα consisting of the set of all α stseq’s, and the fol-
lowing functions.

fromSeq : Sα → Tα
toSeq : Tα → Sα
nth : Tα → N → α
update : Tα → (N× α) → Tα
inject : Tα → SN×α → Tα

where Sα are standard sequences, and nth , update , and inject behave as they do for stan-
dard sequences.

An stseq is basically a sequence but with very little functionality. Other than converting
to and from sequences, the only functions are to read from a position of the sequence (nth),
update a position of the sequence (update), or update multiple positions in the sequence
(inject). To use other functions from the sequence library, one needs to covert an stseq back
to a sequence (using toSeq).

To define the cost specification we need to distinguish between the latest version of
an stseq , and earlier versions. Whenever we update a sequence, we create a new version,
and the old version is still around due to the persistence. The cost specification then gives
different costs for updating the latest version and old versions. Here we only define the
cost for updating and accessing the latest version, because this is the only way we will be
using an stseq .

Cost Specification 22.2 (Single Threaded Array Sequence).

Work Span
fromSeq a O (|a|) O (1)
toSeq a O (|a|) O (1)
nth a i O (1) O (1)
update a (i, v) O (1) O (1)
inject a b O(|b|) O (lg(degree(d)))

In the cost specification the work for both nth and update is O (1), which is asymptot-
ically as good as we can get. Again, however, this is only when a is the latest version of

152 CHAPTER 22. EPHEMERAL AND SINGLE-THREADED SEQUENCES

a sequence (i.e. no one else has updated it). The work for inject is proportional to the
number of updates. It can be viewed as a parallel version of update.

Example 22.2 (Inject with Update Revisited). If we return to our previous example:

inject a b = iterate update a (reverse b)

Using single threaded array sequences, the work is now just Θ(|b|) since each of the |b|
updates take constant work, and every update is on the last version. The span, however,
is also Θ(|b|) since iterate is fully sequential. Therefore the built in inject is significantly
better for parallelism, but they both take the same amount of work.

Applications in this Book. In this book we can use stseq ’s for some graph algorithms,
including breadth-first search (BFS) and depth-first search (DFS), and for hash tables.

3.1 Implementation

You might be curious about how single threaded sequences can be implemented so than
they act purely functional but match the given cost specification. Here we will just briefly
outline one approach.

The idea is to keep with each sequence a version number, and for each position in the
sequence a version list. The version number is incremented each time the sequence is
updated either with update or inject . A version list is a linked list of all the updates to the
corresponding position, each with the version number of when the update was made. The
most recent version is kept at the head of the list, and the rest are kept in decreasing order.
A mutable (impure) array is used to keep a pointer to the head of each list, and the version
number is also mutable.

We now consider how to do lookups and updates on the most recent version. For a
lookup we can just look into the given location and take the first value from the head of
the linked list. This takes constant work. To do an update requires updating the version
number, grabbing the appropriate list, adding the value and version number to the front
of the list, and then writing back the new head of the list using mutation (if done right,
this is a benign effect). The update also takes constant work. Looking up or updating an
old version is more expensive. A lookup requires grabbing the list from the given position,
and then looking through the list for the correct version. An update requires copying the
whole array.

There are two tricky aspects. The first is ensuring that the lists do not get too large.
This can be implemented by copying the whole array once the number of updates equals
the length of the sequence. The second is to ensure safety in a parallel setting, which can
be achieved by using atomic read-modify-write operations. We will briefly cover such
operations in the final part of this course.

	Examples
	Miscellaneous Examples
	Computing Primes

