
Chapter 20

Cost of Sequences

In this chapter, we present several cost specifications for the Sequence ADT Chapter .
These cost specifications pertain to implementations that use several common representa-
tions for sequences based on arrays , trees , and lists .

The cost specifications do not require describing the particular implementations, but
implementations that match the given costs indeed use data structures based on arrays,
trees, and lists (respectively). However, for example, there might many tree implementa-
tions that match the tree cost specification.

All of the the cost bounds we give are based on “pure” implementations, as discussed
in Functional Algorithms Chapter . In particular all functions create new data without
changing the old data. In the case of the array cost specification, this means that updates
are expensive since they need to copy the array. In Ephemeral Sequences we discuss both
the “inpure” costs and an interface that remains pure, but reduces the cost to the same as
the “impure” case when used in a particular way.

1 Cost Specifications

Cost specifications describe the cost—in terms of work and span—of the functions in an
ADT. Typically many specific implementations match a specific cost specification. For ex-
ample, for the tree-sequence specification for sequences (Section 3, an implementation can
use one of many balanced binary tree data structures available.

To use a cost specification, we don’t need to know the details of how these implementa-
tions work. Cost specifications can thus be viewed as an abstraction over implementation
details that do not matter for the purposes of the algorithm.

Note. Cost specifications are similar to prices on restaurant menus. If we view the functions
of the ADT as the dishes in a menu, then the cost specification is the price tag for each dish.
Just as the cost of the dishes in a menu does not change from day to day as the specific
details of the preparation process changes (e.g., different cooks may prepare the dish, the

131

132 CHAPTER 20. COST OF SEQUENCES

origin of the ingredients may vary from one day to the next), cost specifications offer a
layer of abstraction over implementation details that a client of the ADT need not know.

Definition 20.1 (Domination of cost specifications). There are usually multiple ways to
implement an ADT and thus there can be multiple cost specifications for the same ADT.
We say that one cost specification dominates another if for each and every function, its
asymptotic costs are no higher than those of the latter.

Example 20.1. Of the three cost specifications that we consider in this chapter, none dom-
inates another. The list-based cost specification, however, is almost dominated by the oth-
ers, because it is nearly completely sequential.

Choosing cost specifications. When deciding which of the possibly many cost specifica-
tion to use for a particular ADT, we usually notice that there are certain trade-offs: some
functions will be cheaper in one and while others are cheaper in another. In such cases, we
choose the cost specification that minimizes the cost for the algorithm that we wish to ana-
lyze. After we decide the specification to use, what remains is to select the implementation
that matches the specification, which can include additional considerations.

Example 20.2. If an algorithm makes many calls to nth but no calls to append , then we
would use the array-sequence specification rather than the tree-sequence specification, be-
cause in the former nth requires constant work whereas in the latter it requires logarithmic
work. Conversely, if the algorithm mostly uses append and update, then tree-sequence
specification would be better.

Note. Following on our restaurant analogy, suppose that you wish to enjoy a nice three
course meal in a nearby restaurant. Looking over the menues of the restaurants in your
price range, you might realize that prices for the appetizers in one are lower than others
but the main dishes are more expensive. (If that were not the case, the others would be
dominated and, assuming equal quality, they would likely go out of business.) Assuming
your goal is to minimize the total cost of your meal, you would therefore sum up the cost
for the dishes that you plan on enjoying and make your decision based on the total sum.

2 Array Sequences

Cost Specification 20.2 (Array Sequences). The table below specifies the array-sequence
costs. For the cost of inject , we define the degree of an update sequence as the maximum
number of updates targeting the same position. The notation T (−) refer to the trace of the
corresponding operation. The specification for scan assumes that f has constant work and
span.

2. ARRAY SEQUENCES 133

Operation Work Span
length a 1 1
nth a i 1 1
singleton x 1 1
empty 1 1
isSingleton x 1 1
isEmpty x 1 1

tabulate f n 1 +

n∑
i=0

W (f(i)) 1 +
n

max
i=0

S (f(i))

map f a 1 +
∑
x∈a

W (f(x)) 1 + max
x∈a

S (f(x))

filter f a 1 +
∑
x∈a

W (f(x)) lg|a|+max
x∈a

S (f(x))

subseq a (i, j) 1 1
append a b 1 + |a|+ |b| 1
flatten a 1 + |a|+

∑
x∈a |x| 1 + lg|a|

update a (i, x) 1 + |a| 1
inject a b 1 + |a|+ |b| lg(degree(b))
ninject a b 1 + |a|+ |b| 1

collect f a 1 +W (f) · |a| lg|a| 1 + S (f) · lg2|a|
iterate f x a 1 +

∑
f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

reduce f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) lg|a| · max
f(y,z)∈T (−)

S (f(y, z))

scan f x a |a| lg|a|

The functions length , nth , empty , singleton , isEmpty , isSingleton , subseq , all require con-
stant work and span.

Tabulate and Map. The functions tabulate and map total work that is equal to the sum of
the work of applying f at each position, as well as an additional unit cost to account for
tabulate or map itself.

Because it is possible to apply the function f in parallel—there are no dependencies
among the different positions, the span is the maximum of the span of applying f at each
position, plus 1 for the function call itself.

Example 20.3 (Tabulate and map with array costs). As an example of tabulate and map

W
(〈

i2 : 0 ≤ i < n
〉)

= O
(
1 +

∑n−1
0=1 O (1)

)
= O (n)

S
(〈

i2 : 0 ≤ i < n
〉)

= O
(
1 + maxn−1i=0 O (1)

)
= O (1)

because the work and span for i2 is O (1).

134 CHAPTER 20. COST OF SEQUENCES

Filter. The work for the function filter is equal to the sum of the work of applying f at
each position, as well as an additional unit cost, for the function call itself.

Because it is possible to apply the function f in parallel—there are no dependencies
among the different positions, the span is the maximum of the span of applying f at each
position, plus a logarithmic term for performing compaction, i.e., packing the chosen ele-
ments contiguously into the result array.

Example 20.4 (Filter). As an example of filter , we have

W (〈x : x ∈ a | x < 27 〉) = O
(
1 +

∑|a|−1
i=0 O (1)

)
= O (|a|)

S (〈x : x ∈ a | x < 27 〉) = O
(
lg |a|+max

|a|−1
i=0 O (1)

)
= O(lg |a|).

The operation append requires work proportional to the length of the sequences given
as input, can be implemented in constant span.

The operation flatten generalizes append , requiring work proportional to the total length
of the sequences flattened, and can be implemented in parallel in logarithmic span in the
number of sequences flattened.

Update and Inject. The operations update and inject both require work proportional to
the length of the sequences they are given as input. It might seem surprising that update
takes work proportional to the size of the input sequence a, since updating a single element
should require constant work. The reason is that the interface is purely functional so that
the input sequence needs to be copied–we are not allowed to update the old copy.

The function update and non-deterministic inject ninject can be implemented in con-
stant span, but deterministic inject required resolving conflicts more carefully and requires
O (lg(degree(b))) span where the degree of the update sequence b is the maximum number
of updates targeting the same position in the sequence being updated.

In the last section of this chapter, we describe single-threaded array sequences that
allows updating under a sequence in constant work, but under certain restrictions.

Collect. The primary cost in implementing collect is a sorting step that sorts the sequence
based on the keys. The work and span of collect is therefore determined by the work and
span of (comparison) sorting with the specified comparison function f .

Cost of aggregation. The cost of aggregation functions, iterate, reduce, and scan are more
difficult to specify, because they depend their arguments and on the intermediate values
computed during evaluation.

Example 20.5 (Cost of Iterated append). Consider appending the following sequence of
strings using iterate:

iterate append ’ ’ 〈 ’abc ’, ’d ’, ’e ’, ’f ’ 〉 .

2. ARRAY SEQUENCES 135

If we only count the work of append functions performed during evaluation, we obtain
a total work of 22, because the following append functions are performed

1. append ’ ’ ’abc ’ (work 4),

2. append ’abc ’ ’d ’ (work 5),

3. append ’abcd ’ ’e ’ (work 6), and

4. append ’abcde ’ ’f ’ (work 7).

Consider now appending the following sequence of strings, which is a permutation of
the previous, using iterate:

iterate append ’ ’ 〈 ’d ’, ’e ’, ’f ’, ’abc ’ 〉

If we only count the work of append operations using the array-sequence specification,
we obtain a total work of 16, because the following append operations are performed

1. append ’ ’ ’d ’ (work 2),

2. append ’d ’ ’e ’ (work 3),

3. append ’de ’ ’f ’, (work 4) and

4. append ’def ’ ’abc ’ (work 7).

Thus, we have used iteration over two sequences, both with 4 elements, and obtained
different costs even though the sequences are permutations of each other. The reason for
this is that the total cost depends on the intermediate values generated during computa-
tion.

Specification of iterate . To specify the cost of iterate , we consider the intermediate values
generated by an evaluation of iterate, whose specification, originally given in Section 9 is
reproduced here for convenience.

iterate f x a =

{
x if |a| = 0
iterate f (f(x, a[0])) (a[1 · · · |a| − 1]) otherwise.

Consider an evaluation of

iterate f v a

and let

T (iterate f v a)

denote the set of calls to f(·, ·) performed along with the arguments, as defined by the
specification above. We refer to this set of function calls as the trace of iterate and define
the cost of iterate as the sum of these calls.

136 CHAPTER 20. COST OF SEQUENCES

Cost Specification 20.3 (Cost for iterate). Consider evaluation of iterate f v a and let
T (iterate f v a) denote the set of calls (trace) to f(·, ·) performed along with the arguments.
The work and span are as follows.

W (iterate f x a) = O
(
1 +

∑
f(y,z)∈T (iterate f x a) W (f(y, z))

)
S (iterate f x a) = O

(
1 +

∑
f(y,z)∈T (iterate f x a) S (f(y, z))

)
Example 20.6 (Sorting by Iteration). As an interesting example, consider the function mergeOne a x
for merging a sequence a with the singleton sequence 〈x 〉 by using an assumed compari-
son function. The function performs O(n) work in O(lg n) span, where n is the total number
of elements in the output sequence. We can use the mergeOne function to sort a sequence
via iteration as follows

iterSort a = iterate mergeOne 〈 〉 a.

For example, on input a = 〈 2, 1, 0 〉, iterSort first merges 〈 〉 and 〈 2 〉, then merges the result
〈 2 〉 with 〈 1 〉, then merges the resulting sequence 〈 1, 2 〉 with 〈 0 〉 to obtain the final result
〈 0, 1, 2 〉.

The trace for iterSort with an input sequence of length n consists of a set of calls to
mergeOne, where the first argument is a sequence of sizes varying from 1 to n − 1, while
its right argument is always a singleton sequence. For example, the final mergeOne merges
the first (n−1) elements with the last element, the second to last mergeOne merges the first
(n − 2) elements with the second to last element, and so on. Therefore, the total work for
an input sequence a of length n is

W (iterSort a) ≤
n−1∑
i=1

c · (1 + i) = O(n2).

Using the trace, we can also analyze the span of iterSort . Since we iterate adding in each
element after the previous, there is no parallelism between merges, but there is parallelism
within a mergeOne, whose span is is logarithmic. We can calculate the total span as

S (iterSort a) ≤
n−1∑
i=1

c · lg (1 + i) = O(n lg n).

Since average parallelism, W (n) /S (n) = O(n/ lg n), we see that the algorithm has a rea-
sonable amount of parallelism. Unfortunately, it does much too much work.

Note (Algorithm iterSort). Using this reduction order the algorithm is effectively working
from the front to the rear, using mergeOne to “insert” each element into a sorted prefix
where it is placed at the correct location to maintain the sorted order. The algorithm thus
implements the well-known insertion sort.

Cost of reduce. Recall that with reduce, we noted that the result of the computation is not
affected by the order in which the associative function is applied and in fact is the same
as that of performing the same computation with iterate . The cost of reduce, however,
depends on the order in which the operations are performed.

2. ARRAY SEQUENCES 137

Example 20.7 (Cost of reduce append). Consider appending the following code

reduce append ’ ’ 〈 ’abc ’, ’d ’, ’e ’, ’f ’ 〉 .

Suppose performing append operations in left-to-right order and count their work using
the array-sequence specification. The total work is 19, because the following append oper-
ations are performed

1. append ’abc ’’d ’ (work 5),

2. append ’abcd ’’e ’ (work 6), and

3. append ’abcde ’’f ’ (work 7).

Consider now performing the append operations from right to left order. We obtain a
total cost of 15, because the following append operations are performed

1. append ’e ’ ’f ’ (work 3),

2. append ’d ’ ’ef ’, (work 4) and

3. append ’abc ’ ’def ’ (work 7).

Specification of reduce. To specify the cost of reduce, we consider its trace based on its
specification, as given in Section 10 reproduced below for convenience.

reduce f id a =


id if |a| = 0
a[0] if |a| = 1

f
(

reduce f id (a[0 · · · b |a|2 c − 1]),

reduce f id (a[b |a|2 c · · · |a| − 1]
)

otherwise.

Cost Specification 20.4 (Cost of reduce). Consider evaluation of reduce f x a and let T (reduce f x a)
denote the set of calls to f(·, ·) performed along with the arguments. The work and span
are defined as

W (reduce f x a) = O

1 +
∑

f(y,z)∈T (reduce f x a)

W (f(y, z))

 , and

S (reduce f x a) = O

(
lg |a| · max

f(y,z)∈T (reduce f x a)
S (f(y, z))

)
.

Work and Span of reduce. The work bound is simply the total work performed, which
we obtain by summing across all combine functions, plus one for the reduce. The span
bound is more interesting. The lg |a| term expresses the fact that the recursion tree in
the specification of reduce is at most O(lg |a|) deep. Since each node in the recursion
tree has span at most maxf(y,z) S (f(y, z)), any root-to-leaf path, has at most O(lg |a| ·
maxf(a,b) S (f(a, b))) span.

138 CHAPTER 20. COST OF SEQUENCES

Cost of scan . As in iterate and reduce the cost specification of scan depends on the in-
termediate results. But the dependency is more complex than can be represented by our
ADT specification. For scan , we will stop at giving a cost specification by assuming that
the function that we are scanning with performs O (1) work and span.

Cost Specification 20.5 (Cost for scan). Consider the expression scan f x a, where f(·, ·)
always requires O (1) work and span. The work and span of the expression are defined as

W (scan f x a) = O(|a|), and
S (scan f x a) = O(lg |a|).

3 Tree Sequences

The costs for tree sequences is given in Cost Specification below . The specification rep-
resents the cost for a class of implementations that use a balanced tree to represent the
sequence. The cost of each operation is similar to the array-based specification, and many
are exactly the same, i.e., length , singleton , isSingleton , isEmpty , collect , iterate, reduce, and
scan .

There are also differences. The work and span of the operation nth is logarithmic, as
opposed to being constant. This is because in balanced-tree based implementation, the
operation must follow a path from the root to a leaf to find the desired element element.
For a sequence a, such a path has length O(lg |a|). Although nth does more work with tree
sequences, append does less work. Instead of requiring linear work, the work of append
with tree sequences is proportional to the logarithm of the ratio of the size of the larger
sequence to the size of the smaller one smaller one. For example if the two sequences are
the same size, then append takes O (1) work. On the other hand if one is length n and the
other 1, then the work is O(lg n). The work of update is also less with tree sequences than
with array sequences.

The work for operations map and tabulate are the same as those for array sequences;
their span incurs an extra logarithmic overhead. The work and span of filter are the same
for both.

Cost Specification 20.6 (Tree Sequences). We specify the tree-sequence costs as follows.
The notation T (−) refer to the trace of the corresponding operation. The specification for
scan assumes that f has constant work and span.

4. LIST SEQUENCES 139

Operation Work Span
length a 1 1
singleton x 1 1
isSingleton x 1 1
isEmpty x 1 1
nth a i lg|a| lg|a|

tabulate f n 1 +

n∑
i=0

W (f(i)) 1 + lg n+
n

max
i=0

S (f(i))

map f a 1 +
∑
x∈a

W (f(x)) 1 + lg|a|+max
x∈a

S (f(x))

filter f a 1 +
∑
x∈a

W (f(x)) 1 + lg|a|+max
x∈a

S (f(x))

subseq(a, i, j) 1 + lg(|a|) 1 + lg(|a|)
append a b 1 + | lg(|a|/|b|)| 1 + | lg(|a|/|b|)|
flatten a 1 + |a| lg

(∑
x∈a |x|

)
1 + lg(|a|+

∑
x∈a |x|)

inject a b 1 + (|a|+ |b|) lg|a| 1 + lg(|a|+ |b|)
ninject a b 1 + (|a|+ |b|) lg|a| 1 + lg(|a|+ |b|)
collect f a 1 +W (f) · |a| lg|a| 1 + S (f) · lg2|a|
iterate f x a 1 +

∑
f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)
S (f(y, z))

reduce f x a 1 +
∑

f(y,z)∈T (−)
W (f(y, z)) lg|a| · max

f(y,z)∈T (−)
S (f(y, z))

scan f x a |a| lg|a|

4 List Sequences

The Cost Specification below defines the cost for list sequences. The specification repre-
sents the cost for a class of implementations that use (linked) lists to represent the sequence.
The determining cost in list-based implementations is the sequential nature of the repre-
sentation: accessing the element at position i requires traversing the list from the head to i,
which leads to O (i) work and span. List-based implementations therefore expose hardly
any parallelism. Their main advantage is that they require quick access to the head and
the tail of the sequence, which are defined as the first element and the suffix of the se-
quence that starts at the second element respectively.

The work of each operation is similar to the array-based specification. Since the data
structure mostly serial, the span of each operation is essentially the same as that of its
work, except that the total is taken over the spans of its components. The work and span of
subseq operation depends on the beginning position of the subsequence, because list-based
representation can share their suffixes.

Cost Specification 20.7 (List Sequences). We specify the list-sequence costs as follows. The
notation T (−) refer to the trace of the corresponding operation. The specification for scan
assumes that f has constant work and span.

140 CHAPTER 20. COST OF SEQUENCES

Operation Work Span
length a 1 1
singleton x 1 1
isSingleton x 1 1
isEmpty x 1 1
nth a i i i

tabulate f n 1 +

n∑
i=0

W (f(i)) 1 +

n∑
i=0

S (f(i))

map f a 1 +
∑
x∈a

W (f(x)) 1 +
∑
x∈a

S (f(x))

filter f a 1 +
∑
x∈a

W (p(x)) 1 +
∑
x∈a

S (p(x))

subseq a (i, j) 1 + i 1 + i
append a b 1 + |a| 1 + |a|
flatten a 1 + |a|+

∑
x∈a |x| 1 + |a|+

∑
x∈a |x|

update a (i, x) 1 + |a| 1 + |a|
inject a b 1 + |a|+ |b| 1 + |a|+ |b|
ninject a b 1 + |a|+ |b| 1 + |a|+ |b|
collect f a 1 +W (f) · |a| lg |a| 1 + S (f) · |a| lg |a|
iterate f x a 1 +

∑
f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

reduce f x a 1 +
∑

f(y,z)∈T (−)

W (f(y, z)) 1 +
∑

f(y,z)∈T (−)

S (f(y, z))

scan f a |a| |a|

Remark. Since they are serial, list-based sequences are usually ineffective for parallel algo-
rithm design.

	Tree Sequences
	Primitive Tree Sequences
	Parametric Implementation of Tree Sequences

