Chapter 18

The Sequence Abstract Data Type

Sequences are one of the most prevalent ADTs (Abstract Data Types) used in this book,
and more generally in computing. In this chapter, we present the interface of an ADT for
sequences, describe the semantics of the functions in the ADT, and define the notation we
use in this book for sequences.

1 The Abstract Data Type

Data Type 18.1 (Sequences). Define booleans as
B = {true, false},

and orders as
O = {less, greater, equal }.

For any element type «, the - sequence data type is the type S, consisting of the set of

110

1. THE ABSTRACT DATA TYPE 111

all & sequences, and the following values and functions on S,,.

length : Se¢— N

nth i S ¥ N— «

empty : Sa

singleton Doa— S,

tabulate : N—>a)=>N=S,

map : (@a—=B) =S4 — Sg

subseq : Sa ¥ N—=N-=S,

append : Sa — Sa — Sa

filter : (a—=B) =S, — S,

flatten ¢ Ss, = Sa

update i Sa > (Nxa)—=S,

inject : Sa — Syxa — Sa

isEmpty : So— B

isSingleton : S, — B

collect ¢ (axa—=0) = Saxp = Saxs,
iterate (axfB—=a)—>a—Sz—a
reduce D (axa—a)sa—S, > a
scan D (axa—a) > a—S, = (S X)

where the semantics of the values and functions are described in this chapter.

Syntax 18.2 (Sequence Comprehensions). Inspired by mathematical notation for sequences,
we use a “sequence comprehensions” notation as defined below. In the definition,

e iis a variable ranging over natural numbers,

e 1 is a variable ranging over the elements of a sequence,

e is a SPARC expression,

e, and e}, are SPARC expressions whose values are natural numbers,

es and e/, are SPARC expressions whose values are a sequence,

p is a SPARC pattern that binds one or more variables.

les] length e,
es|i] nth es
() empty

(e)

(e:0<i<ey)

singleton e
tabulate (lLambda i .e) e,

(e:p€es) map (Lambda p.e) es
(pe€es]e) filter (lambda p.e) e,
eslen, enr] subseq (6876nae;L —en+1)

!
S

es ++ e append e, e

112 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

2 Basic Functions

Definition 18.3 (Length and indexing). Given a sequence a, length a, also written |a|, re-
turns the length of a (i.e., number of elements). The function nth returns the element of a
sequence at a specified index, e.g. nth a 2, written a[2], returns the element of ¢ with rank
2. If the element demanded is out of range, the behavior is undefined and leads to an error.

Definition 18.4 (Empty and singleton). The value empty is the empty sequence, (). The
function singleton takes an element and returns a sequence containing that element, e.g.,
singleton 1 evaluates to (1).

Definition 18.5 (Functions isEmpty and isSingleton). To identify trivial sequences such as
empty sequences and singleton sequences, which contain only one element, the interface
provides the functions isEmpty and isSingleton. The function isEmpty returns true if the
sequence is empty and false otherwise. The function isSingleton returns true if the
sequence consists of a one element and false otherwise.

3 Tabulate

Definition 18.6 (Tabulate). The function tabulate takes a function f and an natural number
n and produces a sequence of length n by applying f at each position. The function f can
be applied to each element in parallel. We specify tabulate as follows

tabulate (f : N = «) (n:N) : S,
= (f(0),f(1),.... f(n=1)).

Syntax 18.7 (Tabulate). We use the following syntax for tabulate function
(e:0<i<e,) = tabulate (Lambda i.e€) ey,

where e and e, are expressions, the second evaluating to an integer, and i is a variable.
More generally, we can also start at any other index, as in:

(ere;<i<ey).

Example 18.1 (Fibonacci Numbers). Given the function fib i, which returns the i** Fi-
bonacci number, the expression:

a=(fibi:0<i<9)
is equivalent to
a = tabulate fib 9.
When evaluated, it returns the sequence

a=1(0,1,1,2,3,5,8,13,21,34).

4. MAP AND FILTER 113

4 Map and Filter

Mapping over a sequence or filtering out elements of a sequence that does not meet a
desired condition are common tasks. The sequence ADT includes the functions map and
filter for these purposes.

Definition 18.8 (Map). The function map takes a function f and a sequence a and applies
the function f to each element of a returning a sequence of equal length with the results.
As with tabulate, in map, the function f can be applied to all the elements of the sequence
in parallel.

We specify the behavior of map as follows
map (f : oo — B) (a:Sq) : Sp
= {0, f(2)): (i,2) € a}

or equivalently as

map (f :a— B) (a1,...,an—1) :Sa) : Sg = (f(a1), ..., flan—1)).
Syntax 18.9 (Map). We use the following syntax for the map function
(e:p€es)=map (lambda p.e) es,

where e and e, are expressions, the second evaluating to a sequence, and p is a a pattern of
variables (e.g., x or (x,y)).

Definition 18.10 (Filter). The function filter takes a Boolean function f and a sequence a
as arguments and applies f to each element of a. It then returns the sequence consisting
exactly of those elements of s € a for which f(s) returns true, while preserving the relative
order of the elements returned.

We specify the behavior of filter as follows
filter (f :a = B) (a:Sq) : Sq =
{({Gy) ealj<infylle):(i2) cal f(z)}.
As with map and tabulate, the function f in filter can be applied to the elements in parallel.
Syntax 18.11 (Filter Syntax). We use the following syntax for the filter function
(z €es|e) = filter (lambda x . e) e,

where e and e, are expressions. In the syntax, note the distinction between the colon (:)
and the bar (|). We use the colon to draw elements from a sequence for mapping and we
use the bar to select the elements that we wish to filter.

We can map and filter at the same time:

(e:x€eslep) = map(lambda x.e)
(filter (Lambda x . ef) es).

114 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

What appears before the colon (if any) is an expression to apply each element of the se-
quence to generate the result; what appears after the bar (if there is any) is an expression
to apply to each element to decide whether to keep it.

Example 18.2. The expression
<;1:2 T e a>
is equivalent to
map (Lambda z . 2?%) a.
Assuming a = (0,1,1,2,3,5,8,13,21,34) (from above), it evaluates to the sequence:
(0,1,1,4,25,64,169,441,1156) .
Given the function isPrime x which checks if z is prime, the expression
(r:x€a | isPrimex)
is equivalent to
filter isPrime a.

When evaluated, it returns the sequence (2,5,13).

5 Subsequences

Definition 18.12 (Subsequences). The subseq(a,i,j) function extracts a contiguous subse-
quence of a starting at location ¢ and with length j. If the subsequence is out of bounds
of a, only the part within a is returned. We can specify subseq as follows

subseq (a:Sq) (1 :N) (:N): S,
={(k—i,z): (k,x)cali<k<i+j}.

We use the following syntax for denoting subsequences

ale; - - - e;] = subseq (a,e;,e; —e; +1).

Splitting sequences. As we shall see in the rest of this book, many algorithms operate
inductively on a sequence by splitting the sequence into parts, consisting for example, of
the first element and the rest, a.k.a., the head and the tail, or the first half or the second
half. We could define additional functions such as splitHead, splitMid, take, and drop for
these purposes. Since all of these are easily expressible in terms of subsequences, we omit
their discussion.

6. APPEND AND FLATTEN 115

6 Append and Flatten

For constructing large sequences from smaller ones, the sequence ADT provides the func-
tions append and flatten.

Definition 18.13 (Append). The function append (a,b) appends the sequence b after the
sequence a. More precisely, we can specify append as follows

append (a : Sy) (b:Sa) : Sa
=aU{(i+|a|,z): (i,x) € b}

We write a ++ b as a short form for append a b.
Example 18.3 (Append). The append function

(1,2,3) ++(4,5)
yields

(1,2,3,4,5).
Definition 18.14 (Flatten). To append more than two sequences the flatten a function takes
a sequence of sequences and flattens them. For the input is a sequence ¢ = (ay,az,...,a,),

flatten returns a sequence whole elements consists of those of all the a; in order. We can
specify flatten more precisely as follows

flatten (a : Ss,) : S

=i+ >0 diz] s Gw)yeb b eay.
(k,c)€a,k<j

Example 18.4 (Flatten). The flatten function
flatten ((1,2,3),(4),(5,6))

yields
(1,2,3,4,5,6) .

7 Update and Inject

Definition 18.15 (Update). The function update (a, (i, x)), updates location ¢ of sequence a
to contain the value z. If the location is out of range for the sequence, the function returns
the input sequence unchanged.

We specify update as follows
update (a: Sq) (i : Nyx 2) : S,
_ { {G,9): Ghy) €alj#i3U{(G0)} if0<i<]al

a otherwise.

116 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

Definition 18.16 (Inject). To update multiple positions at once, we can use inject. The
function inject a b takes a sequence b of position-value pairs and updates each position
with its associated value. If a position is out of range, then the corresponding update is
ignored. If multiple positions are the same, the first update in the ordering of b take effect.
We define the degree of the update sequence b as the maximum number of updates that
target any position.

Example 18.5 (Update and Inject). Given the string sequence
a={("the’,”cat’,”in’,"the’,"hat "),
update a (1,” rabbit”)
magically yields
("the’,”rabbit’,”in’,”the’,"hat’)
since position 1 is updated with " rabbit . The expression
inject a ((4,”1og’), (1, dog’), (6, hog’), (4, bog”),(0,"a’))
yields
("a’,”dog’,”in’,"the’," log”)

because position 0 is updated with "a’, position 1 with “dog’, and position 4 with " 1og’
(the first of the two updates is applied). Because two updates target position 4 and at most
1 update targets all the other positions, the degree of the update sequence is 2.

Definition 18.17 (Nondeterministic Inject). To update multiple positions at once, we can
also use nondetermistic inject ninject. The function ninject a b takes a sequence b of
position-value pairs and updates each position with its associated value. If a position is out
of range, then the corresponding update is ignored. If multiple positions are the same, any
one of the updates may take effect. The function ninject may thus treat duplicate updates
non-deterministically. Because nondeterministic inject does not insist on determinism of
updates, it may be implemented more efficiently and in lower span.

Example 18.6 (Nondeterministic Inject). Given the string sequence
a=("the’,”cat’,”in’,"the’, " hat’),
the expression
ninject a ((4,” Log”’),(1,"dog’), (6, hog’), (4,"bog’),(0,"a”"))
could yield
("a’,”dog’,”in’,"the’," log”)

since position 0 is updated with " a’, position 1 with “dog’, and position 4 with " 1og” (the
first of the two updates is applied). It could also yield

</al’ldogl’lin17rther,rlog/>

The entry with position 6 is ignored since it is out of range for a.

8. COLLECT 117

8 Collect

Definition 18.18 (Collect). Given a sequence of key-value pairs, the operation collect “col-
lects” together all the values for a given key. This operation is quite common in data pro-
cessing, and in relational database languages such as SQL it is referred to as “Group by”.
The signature of collect is

collect : (cmp : a x a — O) = (a : Saxp) = Saxs;-

Here the “order set” O = {less, equal, greater}.

The first argument cmp is a function for comparing keys of type a, and must define a
total order over the keys. The second argument a is a sequence of key-value pairs. The
collect function collects all values in a that share the same key together into a sequence,
ordering the values in the same order as their appearance in the original sequence.

Example 18.7 (Collect). The following sequence consists of key-value pairs each of which
represents a student and the classes that they take.

kv={("jack’,’15210"),(' jack’,”15213")
(‘mary’,”152107),('mary’,”15213"),(mary’,” 15251 "),
(peter’,”15150"),("peter’,”15251"),

).

We can determine the classes taken by each student by using collect cmp, where cmp is a
comparison function for strings

collect cmp kv = ((' jack’,(’152107,715213",...))
(‘mary’,(’152107,7152137,7152517,...)),
(‘peter’,("15150°,715251",...)),

).

Note that the output sequence is ordered based on the first instance of their key in the input
sequences. Similarly, the order of the classes taken by each student are the same as in the
input sequence.

9 Aggregation by Iteration

Iteration is a fundamental algorithm technique. It involves a sequence of steps, taken one
after another, where each step transforms the state from the previous step. Iteration is an
inherently sequential process.

Definition 18.19 (The iterate and iteratePrefizes). The function iterate iterates over a se-
quence while accumulating a “running sum”, i.e., a result that changes at each step. It

118 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

starts with an initial result and a sequence, and on each step updates the result based on
the next element of the sequence.

The function iterate has the type signature
iterate (f :rax B —a) (z:a)(a:Sp): «

where f is a function mapping a state and an element of a to a new state, z is the initial
state, a is a sequence.

The semantics of iterate is defined as follows.

iterate f x a = { v if |al :.0
iterate f (f(z,al0])) (a[l---|a] —1]) otherwise.

A variant of iteration, the function iterate Prefizes takes the same arguments as iterate
but returns a pair, where the first component is a sequence consisting of all the interme-
diate result computed by iteration, up to and excluding the last element, and the second
component is the final results. More precisely, iteratePrefizes can be specified as

iteratePrefizes f v a =
let g (b,z)y = (b++x, f(z,y))
in dterate g ({),z) a end

Example 18.8. The function iterate computes its final result by computing a result for each
element of the sequence. Concretely, iterate f x a computes the results z;, 0 < ¢ < n = |a],
where

ZTo = X

] - f(lo,a[O])

vy = f(x1,a[l])

£ = f@arialn—1).

The expression
iterate f x a
thus evaluates to z,,.
The expression
iteratePrefizes f x a

performs the same computation and returns ({ o, ..., Tn—1),Tn)-

Example 18.9 (Iteration). For a sequence of length 5, iteration computes its final result as

iterate f x a = f(f(f(f(f(v,al0]),a[1]),a[2]),a[3]), a[4]).

For example,

iterate '+’ 0 (2,5,1,6)

9. AGGREGATION BY ITERATION 119

returns 14 since it starts with the integer state 0 and then one by one adds the integer
elements 2, 5, 1 and 6 of the sequence to the state.

Similarly
iterate ' =" 0 (2,5,1,6)
returns (((0—2) —5)—1) — 6 = —14.
The function
iterate "+’ 0 (map zeroWhenEven a),

which uses the function zero WhenFEven to map even numbers to zero, sums up only the
odd numbers in sequence a, returning 6

Exercise 18.1 (Rightmost Positive). Design an algorithm that, for each element in a se-
quence of integers, finds the rightmost positive number to its left. If there is no positive
element to the left of an element, the algorithm returns —oo for that element.

For example, given the sequence
(1,0,-1,2,3,0,—5,7)
the algorithm would return
(—00,1,1,1,2,3,3,3).
Solution. Consider the function

extendPositive ((£,b),z) =
ifz>0then
(z, b++(1))
else

(€, b++ (1))

This function takes as its first argument the tuple consisting of ¢, the last positive value
seen (or —oo) and a sequence b. The second argument z is a new element. The function
extends the sequence b with ¢ and returns as the most recently seen positive value z if is
positive or ¢ otherwise.

Using this function, we can give an algorithm for the problem of selecting the rightmost
positive number to the left of each element is a given sequence a:

let (£,b) = iterate extendPositive (—oo,()) a
inbd

We can solve the same problem more elegantly using iterate Prefizes. Consider the func-
tion
selectPositive (¢,x) =
ifx > 0then
x

else
Y4

120 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

This function takes as argument ¢, the last positive value seen, and z, the new element from
the sequence. The function then returns x if is positive or £ otherwise. We can now we can
give an algorithm for the problem of selecting the rightmost positive number preceeding
each element in a given sequence a as

let (¢,b) = iteratePrefizes selectPositive — 0o a
inb

Note (Iteration and order of operations). Iteration is a powerful technique but can be too
big of a hammer, especially when used unnecessarily. For example, when summing the ele-
ments in a sequence, we don’t need to perform the addition operations in a particular order
because addition operations are associative and thus they can be performed in any order
desired. The iteration-based algorithm for computing the sum does not take advantage of
this property, computing instead the sum in a left-to-right order. As we will see next, we
can take advantage of associativity to sum up the elements of a sequence in parallel.

10 Aggregation by Reduction

Reduction. The term reduction refers to a computation that repeatedly applies an asso-
ciative binary operation to a collection of elements until the result is reduced to a single
value. Recall that associative operations are defined as operations that allow commuting
the order of operations.

Associativity.

Definition 18.20 (Assocative Function). A function f : ax«a — «isassociative if f(f(z,y), z) =
f(z, f(y, z)) for all 2,y and z of type a.

Example 18.10. Many functions are associative.

e Addition and multiplication on natural numbers are associative, with 0 and 1 as their
identities, respectively.

e Minimum and maximum are also associative with identities co and —oo respectively.

e The append function on sequences is associative, with identity being the empty se-
quence.

e The union operation on sets is associative, with the empty set as the identity.

Note. Associativity implies that when applying f to some values, the order in which the
applications are performed does not matter. Associativity does not mean that you can
reorder the arguments to a function (that would be commutativity).

Important (Associativity of Floating Point Operations). Floating point operations are typ-
ically not associative, because performing them in different orders can lead to different
results because of loss of precision.

10. AGGREGATION BY REDUCTION 121

Definition 18.21 (The reduce operation). In the sequence ADT, we use the function reduce
to perform a reduction over a sequence by applying an associative binary operation to
the elements of the sequence until the result is reduced to a single value. The operation
function has the type signature

reduce (f :axa—) (id:a) (a:Sy): «

where f is an associative function, « is the sequence, and id is the left identity of f, i.e.,
flid,x) =z forall z € a.

When applied to an input sequence with a function f, reduce returns the “sum” with
respect to f of the input sequence. In fact if f is associative this sum in equal to iteration.
We can define the behavior of reduce inductively as follows

id if|a] =0
al0] ifla] =1

reduce fida =4 ¢ (reduce fid (a0 L|5L|J — 1)),

reduce f id (a[L%J o lal = 1}) otherwise.
Example 18.11 (Reduce and append). The expression
reduce append () (’another’,’way’,’to’,” flatten”’)

evaluates to

"anotherwaytoflatten’.

Important. The function reduce is more restrictive than iterate because it is the same func-
tion but with extra restrictions on its input (i.e. that f be associative, and id is a left identity).
If the function f is associative, then we have

reduce f id a = iterate f id a.

Exercise 18.2. Give an example function f, a left identity x, and an input sequence a such
that iterate f x a and reduce f = a return different results.

Important. Although we will use reduce only with associative functions, we define it for all
well-typed functions. To deal properly with functions that are non-associative, the spec-
ification of reduce makes precise the order in which the argument function f is applied.
For instance, when reducing with floating point addition or multiplication, we will need
to take the order of operations into account. Because the specification defines the order in
which the operations are applied, every (correct) implementation of reduce must return the
same result: the result is deterministic regardless of the specifics of the algorithm used in
the implementation.

Exercise 18.3. Given that reduce and iterate are equivalent for assocative functions, why
would we use reduce?

Solution. Even though the input-output behavior of reduce and iterate may match, their
cost specifications differ: unlike iterate, which is strictly sequential, reduce is parallel. In
fact, as we will see in this Chapter , the span of iterate is linear in the size of the input,
whereas the span of reduce is logarithmic.

122 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

11 Aggregation with Scan

The scan function. When we restrict ourselves to associative functions, the input-output
behavior of the function reduce can be defined in terms of the iterate. But the reverse is not
true: iterate cannot always be defined in terms of reduce, because iterate can use the results
of intermediate states computed on the prefixes of the sequence, whereas reduce cannot
because such intermediate states are not available. We now describe a function called scan
that allows using the results of intermediate computations and also does so in parallel.

Definition 18.22 (The functions scan and iScan). The term “scan” refers to a computation
that reduces every prefix of a given sequence by repeatedly applying an associative binary
operation. The scan function has the type signature

scan (f:raxa— a) (id:a) (a:Sq) : (Sa * @),

where f is an associative function, a is the sequence, and id is the left identity element of f.

The expression scan f a evaluates to the cumulative “sum” with respect to f of all
prefixes of the sequence a. For this reason, the scan function is referred to as prefix sums.

We specify the semantics of scan in terms of reduce as follows.

scan fida = ({reduce fidal0---(i—1)]:0<1i<|al),
reduce f id a)

For the definition, we assume that a[0--- — 1] = ().

When computing the result for position ¢, scan does not include the element of the input
sequence at that position. It is sometimes useful to do so. To this end, we define scanl (“1”
stands for “inclusive”).

We define the semantics of scanl in terms of reduce as follows.

scanl fida = (reduce fidal0---i]:0<1i<]a|)

Example 18.12 (Scan). Consider the sequence a = (0, 1,2). The prefixes of a are

° (0)
e (0,1)

e (0,1,2).

The prefixes of a sequence are all the subsequences of the sequence that starts at its begin-
ning. Empty sequence is a prefix of any sequence. The computation scan *+* 0 (0,1,2)

11. AGGREGATION WITH SCAN 123

can be written as

scan *+0 (0,1,2) =((reduce *+*0 (),
reduce *+0 (0),
reduce *+*0 (0,1)
)
reduce *+*0 (0,1,2)

)
=((0,0,1),3).

The computation scand *+* 0 (0,1,2) can be written as

scand *+10 (0,1,2) = { reduce *+*0 (0),
reduce *+*0 (0,1),
reduce *+* 0 (0,1,2,)

)
= (0,1,3).

Note (Scan versus reduce). Since scan can be specified in terms of reduce, one might be
tempted to argue that it is redundant. In fact, it is not: as we shall see, performing reduce
repeatedly on every prefix is not work efficient. Remarkably scan can be implemented by
performing essentially the same work and span of reduce.

Example 18.13 (Copy scan). Scan is useful when we want pass information along the se-
quence. For example, suppose that we are given a sequence of type Sy consisting only
of integers and asked to return a sequence of the same length where each element re-
ceives the previous positive value if any and —oo otherwise. For the example, for input
(0, 7,0, 0, 3, 0), the result should be (—oco, —0c0, 7, 7, 7, 3).

We considered this problem in an example before and presented an algorithm based
on iteration. Because that algorithm uses iteration, it is sequential. But does it have to be
sequential? There is, perhaps, a parallel algorithm.

We can solve this problem using an inclusive scan, if we can find with a combining
function f that does the crux of the work. Consider the function

selectPositive (x,y) = ify > 0 thenyelse x.

The function returns its right (second) argument if it is positive, otherwise it returns its the
left (first) argument.

To be used in a scan, selectPositive must be associative. That is, for all z, y and z, the
following equality should hold:

selectPositive(x, selectPositive(y, z)) = selectPositive(selectPositive(z,y), z).

There are eight possibilities corresponding to the signs of z, y and z. When z > 0, the left
and right hand sides of the equality both yield z. When z < 0 and y > 0, the left and right

124 CHAPTER 18. THE SEQUENCE ABSTRACT DATA TYPE

hand sides both yield y. Finally, when z < 0 and y < 0, they left and right hand sides both
yield z.

To use selectPositive in a scan, we also need its left identity. Because
selectPositive (—o0,y) =y

for any y, the left identity for selectPositive is —oo.

Remark (Reduce and scan). Experience in parallel computing shows that reduce and scan
are powerful primitives that suffice to express many parallel algorithms on sequences.
In some ways this is not surprising, because the functions allow using two important
algorithm-design techniques: reduce function allows expressing divide-and-conquer algo-
rithms and the scan function allows expressing iterative algorithms.

	Introduction
	Defining Sequences

