
Chapter 16

Recurrences

This chapter covers recurrences and presents three methods for solving recurrences: the
“Tree Method” the “Brick Method” , and the “Substitution Method” .

1 The Basics

Recurrences are simply recursive functions for which the argument(s) and result are num-
bers. As is normal with recursive functions, recurrences have a recursive case along with
one or more base cases. Although recurrences have many applications, in this book we
mostly use them to represent the cost of algorithms, and in particular their work and span.
They are typically derived directly from recursive algorithms by abstracting the arguments
of the algorithm based on their sizes, and using the cost model described in Cost Models
Chapter . Although the recurrence is itself a function similar to the algorithm it abstracts,
the goal is not to run it, but instead the goal is to determine a closed form solution to it
using other methods. Often we satisfy ourselves with finding a closed form that specifies
an upper or lower bound on the function, or even just an asymptotic bound.

Example 16.1 (Fibonacci). Here is a recurrence written in SPARC that you should recog-
nize:

F (n) = case n of
0 => 0
| 1 => 1
| => F (n− 1) + F (n− 2) .

It has an exact closed form solution:

F (n) =
ϕn − (1− ϕ)n√

5
,

where ϕ = 1+
√
5

2 is the golden ratio. We can write this in asymptotic notation as

F (n) = Θ(ϕn)

94

2. SOME CONVENTIONS 95

since the first term dominates asymptotically. Solving this recurrence exactly is more that
we will ask in this course, but the substitution method described in this chapter will allow
you to prove it correct.

Example 16.2 (Mergesort Recurrence). Assuming that the input length is a power of 2, we
can write the code for parallel mergesort algorithm as follows.

msort(A) =
if |A| ≤ 1 then A
else
let (L,R) = msort(A[0 . . . |A|/2]) || msort(A[|A|/2 . . . |A|])
in merge(L,R) end

By abstracting based on the length ofA, and using the cost model described in Cost Models
Chapter , we can write a recurrence for the work of mergesort as:

Wmsort(n) =
if n ≤ 1 then c1
else
let (WL,WR) = (Wmsort(n/2),Wmsort(n/2))
inWL +WR +Wmerge(n) + c2 end

where the ci are constants. Assuming Wmerge(n) = c3n+ c4 this can be simplified to

Wmsort(n) = if n ≤ 1 then c1
else 2Wmsort(n/2) + c3n+ c5

where c5 = c2 + c4. We will show in this chapter that this recurrence solves to

Wmsort(n) = O(n lg n)

using all three of our methods.

2 Some conventions

To reduce notation we use several conventions when writing recurrences.

Syntax. We typically write recurrences as mathematical relations of the form

Wf (n) =


c1 base case 1
c2 base case 2
· · · · · ·
recursive definition otherwise.

Dropping the subscript. We often drop the subscript on the cost W or S (span) when
obvious from the context.

96 CHAPTER 16. RECURRENCES

Base case. Often base cases are trivial—i.e., some constant if n ≤ 1. In such cases, we
usually leave them out.

Big-O inside a recurrence. Technically using big-O notation in a recurrence as in:

W (n) = 2W (n/2) +O(n)

is not well defined. This is because 2W (n/2)+O(n) indicates a set of functions, not a single
function. In this book when we use O(f(n)) in a recurrences it is meant as shorthand for
c1f(n) + c2, for some constants c1 and c2. Furthermore, when solving the recurrence the
O(f(n)) should always be replaced by c1f(n) + c2.

Inequality. Because we are mostly concerned with upper bounds, we can be sloppy and
add (positive) constants on the right-hand side of an equation. In such cases, we typically
use an inequality. For example, we may write for some constants c1, c2,

W (n) ≤ 2W (n/2) + c1n+ c2.

Input size inprecision. A technical issue concerns rounding of input sizes. Going back to
the mergesort example , note that we assumed that the size of the input to merge sort, n,
is a power of 2. If we did not make this assumption, i.e., for general n, we would partition
the input into two parts, whose sizes may differ by up to one element. In such a case, we
could write the work recurrence as

W (n) =

{
O(1) if n ≤ 1
W (dn/2e) +W (bn/2c) +O(n) otherwise.

When working with recurrences, we typically ignore floors and ceiling because they
change the size of the input by at most one, which does not usually affect the closed form
by more than a constant factor.

Example 16.3 (Mergesort recurrence revisited). Using our conventions we can write our
recurrence for the work of mergesort as:

W (n) ≤ 2W (n/2) +O(n) .

However, when solving it is best to write it as:

W (n) ≤
{
cb if n ≤ 1
2W (n/2) + c1n+ c2 otherwise .

Assuming merge has logarithmic span, we can similarly write a recurrence for the span of
the parallel mergesort as:

S(n) ≤ S(n/2) +O(lg n) .

3. THE TREE METHOD 97

3 The Tree Method

Definition 16.1 (Tree Method). The tree method is a technique for solving recurrences.
Given a recurrence, the idea is to derive a closed form solution of the recurrence by first
unfolding the recurrence as a tree and then deriving a bound by considering the cost at each
level of the tree. To apply the technique, we start by replacing the asymptotic notations in
the recurrence, if any. We then draw a tree where each recurrence instance is represented
by a subtree and the root is annotated with the cost that occurs at this level, that is beside
the recurring costs.

After we determine the tree, we ask several questions.

• How many levels are there in the tree?

• What is the problem size on level i?

• What is the cost of each node on level i?

• How many nodes are there on level i?

• What is the total cost across the level i?

Based on the answers to these questions, we can write the cost as a sum and calculate
it.

Example 16.4. Consider the recurrence

W (n) = 2W (n/2) +O(n).

By the definition of asymptotic complexity, we can establish that

W (n) ≤ 2W (n/2) + c1 · n+ c2,

where c1 and c2 are constants.

We now draw a tree to represent the recursion. Since there are two recursive calls, the
tree is a binary tree, whose input is half the size of the size of the parent node. We then
annotate each node in the tree with its cost noting that if the problem has size m, then the
cost, excluding that of the recursive calls, is at most c1 ·m+ c2.

The drawing below illustrates the resulting tree; each level is annotated with the prob-
lem size (left) and the cost at that level (right).

98 CHAPTER 16. RECURRENCES

We observe that:

• level i (the root is level i = 0) contains 2i nodes,

• a node at level i costs at most c1(n/2i) + c2.

Thus, the total cost on level i is at most

2i ·
(
c1
n

2i
+ c2

)
= c1 · n+ 2i · c2.

Because we keep halving the input size, the number of levels i ≤ lg n. Hence, we have

W (n) ≤
lgn∑
i=0

(
c1 · n+ 2i · c2

)
= c1n(1 + lg n) + c2(n+ n

2 + n
4 + · · ·+ 1)

= c1n(1 + lg n) + c2(2n− 1)

∈ O(n lg n),

where in the second to last step, we apply the fact that for a > 1,

1 + a+ · · ·+ an =
an+1 − 1

a− 1
≤ an+1.

4 The Brick Method

The brick method is a special case of the tree method, aimed at recurrences that grow
or decay geometrically across levels of the recursion tree. A sequence of numbers has
geometric growth if it grows by at least a constant factor (> 1) from element to element, and
has geometric decay if it decreases by at least a constant factor. The beauty of a geometric
sequence is that its sum is bounded by a constant times the last element (for geometric
growth), or the first element (for geometric decay).

Exercise 16.1 (Sums of geometric series.). Consider the sum of the sequence S = 〈1, α, α2, . . . , αn〉.
Show that

1. for α > 1 (geometric growth), the sum of S is at most
(

α
α−1

)
· αn, and

2. for α < 1 (geometric decay), the sum of S is at most
(

1
1−α

)
· 1.

Hint: for the first let s be the sum, and consider αs− s, cancelling terms as needed.

Solution. Let

s =

n∑
i=0

αi .

4. THE BRICK METHOD 99

To solve the first case we use

αs− s =
(
α
∑n
i=0 α

i
)
−
∑n
i=0 α

i

=
(∑n

i=0 α
i+1
)
−
∑n
i=0 α

i

= αn+1 − 1
< αn+1 .

Now by dividing through by α− 1 we get

s <
αn+1

α− 1
=

(
α

α− 1

)
· αn ,

which is we wanted to show.

The second case is similar but using s− αs.

In the tree method, if the costs grow or decay geometrically across levels (often the case),
then for analyzing asymptotic costs we need only consider the cost of the root (decay) , or
the total cost of the leaves (growth). If there is no geometric growth or decay then it often
suffices to calculate the cost of the worst level (often either the root or leaves) and multiply
it by the number of levels. This leads to three cases which we refer to as root dominated,
leaf dominated and balanced. Conveniently, to distinguish these three cases we need only
consider the cost of each node in the tree and how it relates to the cost of its children.

Definition 16.2 (Brick Method). Consider each node v of the recursion tree, and let N(v)
denote its input size, C(v) denote its cost, and D(v) denote the set of its children. There
exists constants a ≥ 1 (base size), α > 1 (grown/decay rate) such that:

Root Dominated For all nodes v such that N(v) > a,

C(v) ≥ α
∑

u∈D(v)

C(u),

i.e., the cost of the parent is at least a constant factor greater than the sum of the costs
of the children. In this case, the total cost is dominated by the root, and is upper
bounded by α

α−1 times the cost of the root.

Leaves Dominated For all v such that N(v) > a,

C(v) ≤ 1

α

∑
u∈D(v)

C(u),

i.e., the cost of the parent is at least a constant factor less than the sum of the costs of
the children. In this case, the total cost is dominated by the cost of the leaves, and is
upper bounded by α

α−1 times the sum of the cost of the leaves. Most often all leaves
have constant cost so we just have to count the number of leaves.

Balanced When neither of the two above cases is true. In this case the cost is upper
bounded by the number of levels times the maximum cost of a level.

100 CHAPTER 16. RECURRENCES

Proof. We first consider the root dominated case. For this case if the root has cost C(r),
level i (the root is level 0) will have total cost at most (1/α)iC(r). This is because the cost
of the children of every node on a level decrease by at least a factor of α to the next level.
The total cost is therefore upper bounded by

∞∑
i=0

(
1

α

)i
C(r).

This is a decaying geometric sequence and therefore is upper bounded by α
α−1C(r), as

claimed.

For the leaf dominated case, if all leaves are on the same level and have the same cost,
we can make a similar argument as above but in the other direction—i.e. the levels increase
geometrically down to the leaves. The cost is therefore dominated by the leaf level. In
general, however, not all leaves are at the same level.

For the general leaf-dominated case, let L be the set of leaves. Consider the cost C(l)
for l ∈ L, and account a charge of (1/α)iC(l) to its i-th ancestor in the tree (its parent is its
first ancestor). Adding up the contributions from every leaf to the internal nodes of the tree
gives the maximum possible cost for all internal nodes. This is because for this charging
every internal node will have a cost that is exactly (1/α) the sum of the cost of the children,
and this is the most each node can have by our assumption of leaf-dominated recurrences.
Now summing the contributions across leaves, including the cost of the leaves themselves
(i = 0), we have as an upper bound on the total cost across the tree:

∑
l∈L

∞∑
i=0

(
1

α

)i
C(l) .

This is a sum of sums of decaying geometric sequences, giving an upper bound on the total
cost across all nodes of α

α−1
∑
l∈L C(l), as claimed.

The balanced case follows directly from the fact that the total cost is the sum of the
cost of the levels, and hence at most the number of levels times the level with maximum
cost.

Remark. The term “brick” comes from thinking of each node of the tree as a brick and the
width of a brick being its cost. The bricks can be thought of as being stacked up by level.
A recurrence is leaf dominated if the pile of bricks gets narrower as you go up to the root.
It is root dominated if it gets wider going up to the root. It is balanced if it stays about the
same width.

Example 16.5 (Root dominated). Lets consider the recurrence

W (n) = 2W (n/2) + n2.

For a node in the recursion tree of size n we have that the cost of the node is n2 and the
sum of the cost of its children is (n/2)2 + (n/2)2 = n2/2. In this case the cost has decreased
by a factor of two going down the tree, and hence the recurrence is root dominated. There-
fore for asymptotic analysis we need only consider the cost of the root, and we have that
W (n) = O(n2).

4. THE BRICK METHOD 101

In the leaf dominated case the cost is proportional to the number of leaves, but we have
to calculate how many leaves there are. In the common case that all leaves are at the same
level (i.e. all recursive calls are the same size), then it is relatively easy. In particular, one
can calculate the number of recursive calls at each level, and take it to the power of the
depth of the tree, i.e., (branching factor)depth.

Example 16.6 (Leaf dominated). Lets consider the recurrence

W (n) = 2W (n/2) +
√
n .

For a node of size n we have that the cost of the node is
√
n and the sum of the cost of its

two children is
√
n/2+

√
n/2 =

√
2
√
n. In this case the cost has increased by a factor of

√
2

going down the tree, and hence the recurrence is leaf dominated. Each leaf corresponds to
the base case, which has cost 1.

Now we need to determine how many leaves there are. Since each recursive call halves
the input size, the depth of recursion is going to be lg n (the number of times one needs to
half n before getting to size 1). Now on each level the recursion is making two recursive
calls, so the number of leaves will be 2lgn = n. We therefore have that W (n) = O(n).

Example 16.7 (Balanced). Lets consider the same recurrence we considered for the tree
method, i.e.,

W (n) = 2W (n/2) + c1n+ c2.

For all nodes we have that the cost of the node is c1n + c2 and the sum of the cost of the
two children is (c1n/2 + c2) + (c1n/2 + c2) = c1n + 2c2. In this case the cost is about the
same for the parent and children, and certainly not growing or decaying geometrically. It
is therefore a balanced recurrence. The maximum cost of any level is upper bounded by
(c1 + c2)n, since there are at most n total elements across any level (for the c1n term) and at
most n nodes (for the c2n term). There are 1+ lg n levels, so the total cost is upper bounded
by (c1 + c2)n(1 + lg n). This is slightly larger than our earlier bound of c1n lg n+ c2(2n− 1),
but it makes no difference asymptotically—they are both O(n lg n).

Remark. Once you are used to using the brick method, solving recurrences can often be
done very quickly. Furthermore the brick method can give a strong intuition of what part
of the program dominates the cost—either the root or the leaves (or both if balanced). This
can help a programmer decide how to best optimize the performance of recursive code.
If it is leaf dominated then it is important to optimize the base case, while if it is root
dominated it is important to optimize the calls to other functions used in conjunction with
the recursive calls. If it is balanced, then, unfortunately, both need to be optimized.

Exercise 16.2. For each of the following recurrences state whether it is leaf dominated, root
dominated or balanced, and then solve the recurrence

W (n) = 3W (n/2) + n
W (n) = 2W (n/3) + n
W (n) = 3W (n/3) + n
W (n) = W (n− 1) + n
W (n) =

√
nW (

√
n) + n2

W (n) = W (
√
n) +W (n/2) + n

102 CHAPTER 16. RECURRENCES

Solution. The recurrence W (n) = 3W (n/2) + n is leaf dominated since n ≤ 3(n/2) = 3
2n.

It has 3lgn = nlg 3 leaves so W (n) = O(nlg 3).

The recurrence W (n) = 2W (n/3) + n is root dominated since n ≥ 2(n/3) = 2
3n. There-

fore W (n) = O(n), i.e., the cost of the root.

The recurrence W (n) = 3W (n/3) + n is balanced since n = 3(n/3). The depth of
recursion is log3 n, so the overall cost is n per level for log3 n levels, which gives W (n) =
O(n log n).

The recurrence W (n) = W (n − 1) + n is balanced since each level only decreases by 1
instead of by a constant fraction. The largest level is n (at the root) and there are n levels,
which gives W (n) = O(n · n) = O(n2).

The recurrenceW (n) =
√
nW (

√
n)+n2 is root dominated since n2 ≥

√
n·(
√
n)

2
= n3/2.

In this case the decay is even faster than geometric. Certainly for any n ≥ 2, it satisfies our
root dominated condition for α =

√
2. Therefore W (n) = O(n2).

The recurrence W (n) = W (
√
n) + W (n/2) + n is root dominated since for n > 16,

n ≥ 4
3 (
√
n+ n/2). Note that here we are using the property that a leaf can be any problem

size greater than some constant a. Therefore W (n) = O(n), i.e., the cost of the root.

Advanced. In some leaf-dominated recurrences not all leaves are at the same level. An
example isW (n) = W (n/2)+W (n/3)+1. Let L(n) be the number of leaves as a function of
n. We can solve for L(n) using yet another recurrence. In particular the number of leaves
for an internal node is simply the sum of the number of leaves of each of its children. In
the example this will give the recurrence L(n) = L(n/2) + L(n/3). Hence, we need to find
a function L(n) that satisfies this equation. If we guess that it has the form L(n) = nβ for
some β, we can plug it into the equation and try to solve for β:

nβ =
(
n
2

)β
+
(
n
3

)β
= nβ

((
1
2

)β
+
(
1
3

)β)
Now dividing through by nβ gives(

1

2

)β
+

(
1

3

)β
= 1 .

This gives β ≈ .788 (actually a tiny bit less). Hence L(n) < n.788, and because the original
recurrence is leaf dominated: W (n) ∈ O(n.788).

This idea of guessing a form of a solution and solving for it is key in our next method
for solving recurrences, the substitution method.

5 Substitution Method

The tree method can be used to find the closed form solution to many recurrences but in
some cases, we need a more powerful techniques that allows us to make a guess and then

5. SUBSTITUTION METHOD 103

verify our guess via mathematical induction. The substitution method allows us to do that
exactly.

Important. This technique can be tricky to use: it is easy to start on the wrong foot with a
poor guess and then derive an incorrect proof, by for example, making a small mistake. To
minimize errors, you can follow the following tips:

1. Spell out the constants—do not use asymptotic notation such as big-O. The problem
with asymptotic notation is that it makes it super easy to overlook constant factors,
which need to be carefully accounted for.

2. Be careful that the induction goes in the right direction.

3. Add additional lower-order terms, if necessary, to make the induction work.

Example 16.8. Consider the recurrence

W (n) = 2W (n/2) +O(n).

By the definition of asymptotic complexity, we can establish that

W (n) ≤ 2W (n/2) + c1 · n+ c2,

where c1 and c2 are constants.

We will prove the following theorem using strong induction on n.

Theorem. Let a constant k > 0 be given. If W (n) ≤ 2W (n/2) + k · n for n > 1 and
W (n) ≤ k for n ≤ 1, then we can find constants κ1 and κ2 such that

W (n) ≤ κ1 · n lg n+ κ2.

Proof. Let κ1 = 2k and κ2 = k. For the base case (n = 1), we check that W (1) ≤ k ≤ κ2.
For the inductive step (n > 1), we assume that

W (n/2) ≤ κ1 · n2 lg(n2) + κ2,

And we’ll show that W (n) ≤ κ1 · n lg n + κ2. To show this, we substitute an upper bound
for W (n/2) from our assumption into the recurrence, yielding

W (n) ≤ 2W (n/2) + k · n
≤ 2(κ1 · n2 lg(n2) + κ2) + k · n
= κ1n(lg n− 1) + 2κ2 + k · n
= κ1n lg n+ κ2 + (k · n+ κ2 − κ1 · n)

≤ κ1n lg n+ κ2,

where the final step follows because k · n+ κ2 − κ1 · n ≤ 0 as long as n > 1.

Variants of the recurrence considered in our last example arise commonly in algorithms.
Next, we establish a theorem that shows that the same bound holds for a more general class
of recurrences.

104 CHAPTER 16. RECURRENCES

Theorem 16.1 (Superlinear Recurrence). Let ε > 0 be a constant and consider the recur-
rence

W (n) = 2W (n/2) + k · n1+ε.

If W (n) ≤ 2W (n/2) +k ·n1+ε for n > 1 and W (n) ≤ k for n ≤ 1, then for some constant
κ,

W (n) ≤ κ · n1+ε.

Proof. Let κ = 1
1−1/2ε · k. The base case is easy: W (1) = k ≤ κ1 as 1

1−1/2ε ≥ 1. For the
inductive step, we substitute the inductive hypothesis into the recurrence and obtain

W (n) ≤ 2W (n/2) + k · n1+ε

≤ 2κ
(n

2

)1+ε
+ k · n1+ε

= κ · n1+ε +

(
2κ
(n

2

)1+ε
+ k · n1+ε − κ · n1+ε

)
≤ κ · n1+ε,

where in the final step, we use the fact that for any δ > 1:

2κ
(n

2

)δ
+ k · nδ − κ · nδ = κ · 2−ε · nδ + k · nδ − κ · nδ

= κ · 2−ε · nδ + (1− 2−ε)κ · nδ − κ · nδ

≤ 0.

An alternative way to prove the same theorem is to use the tree method and evaluate
the sum directly. The recursion tree here has depth lg n and at level i (again, the root is at
level 0), we have 2i nodes, each costing k · (n/2i)1+ε. Thus, the total cost is

lgn∑
i=0

k · 2i ·
(n

2i

)1+ε
= k · n1+ε ·

lgn∑
i=0

2−i·ε

≤ k · n1+ε ·
∞∑
i=0

2−i·ε.

But the infinite sum
∑∞
i=0 2−i·ε is at most 1

1−1/2ε . Hence, we conclude W (n) ∈ O(n1+ε).

6 Master Method

You might have learned in a previous course about the master method for solving recur-
rences. We do not like to use it, because it only works for special cases and does not help

6. MASTER METHOD 105

develop intuition. It requires that all recursive calls are the same size and are some constant
factor smaller than n. It doesn’t work for recurrences such as:

W (n) = W (n− 1) + 1
W (n) = W (2n/3) +W (n/3) + n3

W (n) =
√
n W (

√
n) + 1

all for which the tree, brick, and substitution method work. We note, however, that the
three cases of the master method correspond to limited cases of leaves dominated, bal-
anced, and root dominated of the brick method.

	Cost Models
	Machine-Based Cost Models
	RAM Model
	PRAM: Parallel Random Access Machine

	Language Based Models
	The Work-Span Model
	Scheduling

