
Chapter 15

Cost Models

Any algorithmic analysis must assume a cost model that defines the resource costs re-
quired by a computation. There are two broadly accepted ways of defining cost models:
machine-based and language-based cost models.

1 Machine-Based Cost Models

Definition 15.1 (Machine-Based Cost Model). A machine-based (cost) model takes a ma-
chine model and defines the cost of each instruction that can be executed by the machine—
often unit cost per instruction. When using a machine-based model for analyzing an al-
gorithm, we translate the algorithm so that it can be executed on the machine and then
analyze the cost of the machine instructions used by the algorithm.

Remark. Machine-based models are suitable for deriving asymptotic bounds (i.e., using
big-O, big-Theta and big-Omega) but not for predicting exact runtimes. The reason for this
is that on a real machine not all instructions take the same time, and furthermore not all
machines have the same instructions.

1.1 RAM Model

The classic machine-based model for analyzing sequential algorithms is the Random Ac-
cess Machine or RAM. In this model, a machine consists of a single processor that can
access unbounded memory; the memory is indexed by the natural numbers. The pro-
cessor interprets sequences of machine instructions (code) that are stored in the memory.
Instructions include basic arithmetic and logical operations (e.g. +, -, *, and, or, not),
reads from and writes to arbitrary memory locations, and conditional and unconditional
jumps to other locations in the code. Each instruction takes unit time to execute, including
those that access memory. The execution-time, or simply time of a computation is mea-
sured in terms of the number of instructions executed by the machine. Because the model
is sequential (there is only one processor) time and work are the same.

85

86 CHAPTER 15. COST MODELS

Critique of the RAM Model. Most research and development of sequential algorithms
has used the RAM model for analyzing time and space costs. One reason for the RAM
model’s success is that it is relatively easy to reason about the costs because algorithmic
pseudo code can usually be translated to the model. Similarly, code in low-level sequential
languages such as C can also be translated (compiled) to the RAM Model relatively easily.
When using higher level languages, the translation from the algorithm to machine instruc-
tions becomes more complex and we find ourselves making strong, possibly unrealistic
assumptions about costs, even sometimes without being aware of the assumptions.

More broadly, the RAM model becomes difficult to justify in modern languages. For
example, in object- oriented languages certain operations may require substantially more
time than others. Likewise, features of modern programming languages such as automatic
memory management can be difficult to account for in analysis. Functional features such as
higher-order functions are even more difficult to reason about in the RAM model because
their behavior depends on other functions that are used as arguments. Such functional fea-
tures, which are the mainstay of “advanced” languages such as the ML family and Haskell,
are now being adopted by more mainstream languages such as Python, Scala, and even for
more primitive (closer to the machine) languages such as C++. All in all, it requires signif-
icant expertise to understand how an algorithm implemented in modern languages today
may be translated to the RAM model.

Remark. One aspect of the RAM model is the assumption that accessing all memory loca-
tions has the same uniform cost. On real machines this is not the case. In fact, there can
be a factor of 100 or more difference between the time for accessing different locations in
memory. For example, all machines today have caches and accessing the first-level cache
is usually two orders of magnitude faster than accessting main memory.

Various extensions to the RAM model have been developed to account for this non-
uniform cost of memory access. One variant assumes that the cost for accessing the ith

memory location is f(i) for some function f , e.g. f(i) = log(i). Fortunately, however,
most algorithms that are good in these more detailed models are also good in the RAM
model. Therefore analyzing algorithms in the simpler RAM model is often a reasonable
approximation to analyzing in the more refined models. Hence the RAM has served quite
well despite not fully accounting for non-uniform memory costs.

The model we use in this book also does not account for non-uniform memory costs,
but as with the RAM the model can be refined to account for it.

1.2 PRAM: Parallel Random Access Machine

The RAM model is sequential but can be extended to use multiple processors which share
the same memory. The extended model is called the Parallel Random Access Machine.

PRAM Model. A Parallel Random Access Machine, or PRAM, consist of p sequential
random access machines (RAMs) sharing the same memory. The number of processors,
p, is a parameter of the machine, and each processor has a unique index in {0, . . . , p − 1},
called the processor id. Processors in the PRAM operate under the control of a common
clock and execute one instruction at each time step. The PRAM model is most usually used

2. LANGUAGE BASED MODELS 87

as a synchronous model, where all processors execute the same algorithm and operate on
the same data structures. Because they have distinct ids, however, different processors can
do different computations.

Example 15.1. We can specify a PRAM algorithm for adding one to each element of an
integer array with p elements as shown below. In the algorithm, each processor updates
certain elements of the array as determined by its processor id, id.

(* Input: integer array A. *)
arrayAdd = A[id]← A[id] + 1

If the array is larger than p, then the algorithm would have to divide the array up and into
parts, each of which is updated by one processor.

SIMD Model. Because in the PRAM all processors execute the same algorithm, this typ-
ically leads to computations where each processor executes the same instruction but pos-
sibly on different data. PRAM algorithms therefore typically fit into single instruction
multiple data, or SIMD, programming model. Example 15.1 shows an example SIMD
program.

Critique of PRAM. Since the model is synchronous, and it requires the algorithm de-
signer to map or schedule computation to a fixed number of processors, the PRAM model
can be awkward to work with. Adding a value to each element of an array is easy if the
array length is equal to the number of processors, but messier if not, which is typically the
case. For computations with nested parallelism, such as divide-and-conquer algorithms,
the mapping becomes much more complicated.

We therefore don’t use the PRAM model in this book. Most of the algorithms presented
in this book, however, also work with the PRAM (with more complicated analysis), and
many of them were originally developed using the PRAM model.

2 Language Based Models

Language-Based Cost-Models. A language-based model takes a language as the starting
point and defines cost as a function mapping the expressions of the language to their cost.
Such a cost function is usually defined as a recursive function over the different forms of
expressions in the language. To analyze an algorithm by using a language-based model,
we apply the cost function to the algorithm written in the language. In this book, we use a
language-based cost model, called the work-span model.

2.1 The Work-Span Model

Our language-based cost model is based on two cost metrics: work and span. Roughly
speaking, the work of a computation corresponds to the total number of operations it per-

88 CHAPTER 15. COST MODELS

forms, and the span corresponds to the longest chain of dependencies in the computation.
The work and span functions can be defined for essentially any language ranging from
low-level languages such as C to higher level languages such as the ML family. In this
book, we use the SPARC language.

Notation for Work and Span. For an expressions e, or an algorithm written in a language,
we write W (e) for the work of e and S(e) for the span of e.

Example 15.2. For example, the notation

W (7 + 3)

denotes the work of adding 7 and 3.

The notation

S(fib(11))

denotes the span for calculating the 11th Fibonacci number using some particular code for
fib.

The notation

W (mySort(a))

denotes the work for mySort applied to the sequence a.

Using Input Size. Note that in the third example the sequence a is not defined within the
expression. Therefore we cannot say in general what the work is as a fixed value. However,
we might be able to use asymptotic analysis to write a cost in terms of the length of a, and
in particular if mySort is a good sorting algorithm we would have:

W (mySort(a)) = O(|a| log |a|).

Often instead of writing |a| to indicate the size of the input, we use n or m as shorthand.
Also if the cost is for a particular algorithm, we use a subscript to indicate the algorithm.
This leads to the following notation

WmySort(n) = O(n log n).

where n is the size of the input of mysort. When obvious from the context (e.g. when in a
section on analyzing mySort) we typically drop the subscript, writing W (n) = O(n log n).

Definition 15.2 (SPARC Cost Model). The work and span of SPARC expressions are de-
fined below. In the definition and throughout this book, we write W (e) for the work of
the expression and S(e) for its span. Both work and span are cost functions that map an
expression to a integer cost. As common in language-based models, the definition follows
the definition of expressions for SPARC (Sparc Chapter). We make one simplifying as-
sumption in the presentation: instead of considering general bindings, we only consider
the case where a single variable is bound to the value of the expression.

2. LANGUAGE BASED MODELS 89

In the definition, the notation Eval(e) evaluates the expression e and returns the result,
and the notation [v/x] e indicates that all free (unbound) occurrences of the variable x in
the expression e are replaced with the value v.

W (v) = 1
W (lambda p . e) = 1
W (e1 e2) = W (e1) + W (e2) + W ([Eval(e2)/x] e3) + 1

where Eval(e1) = lambda x . e3
W (e1 op e2) = W (e1) + W (e2) + 1
W (e1 , e2) = W (e1) + W (e2) + 1
W (e1 || e2) = W (e1) + W (e2) + 1

W

 if e1
then e2
else e3

 =

{
W (e1) + W (e2) + 1 if Eval(e1) = true
W (e1) + W (e3) + 1 otherwise

W

(
let x = e1
in e2 end

)
= W (e1) + W ([Eval(e1)/x] e2) + 1

W ((e)) = W (e)

S(v) = 1
S(lambda p . e) = 1
S(e1 e2) = S(e1) + S(e2) + S([Eval(e2)/x] e3) + 1

where Eval(e1) = lambda x . e3
S(e1 op e2) = S(e1) + S(e2) + 1
S(e1 , e2) = S(e1) + S(e2) + 1
S(e1 || e2) = max (S(e1), S(e2)) + 1

S

 if e1
then e2
else e3

 =

{
S(e1) + S(e2) + 1 Eval(e1) = true
S(e1) + S(e3) + 1 otherwise

S

(
let x = e1
in e2 end

)
= S(e1) + S([Eval(e1)/x] e2) + 1

S((e)) = S(e)

Example 15.3. Consider the expression e1+e2 where e1 and e2 are themselves other expres-
sions (e.g., function application). Note that this is an instance of the rule e1 op e2, where op
is a plus operation. In SPARC, we evaluate this expressions by first evaluating e1 and then
e2 and then computing the sum. The work of the expressions is therefore

W (e1 + e2) = W (e1) + W (e2) + 1.

The additional 1 accounts for computation of the sum.

For the let expression, we first evaluate e1 and assign it to x before we can evaluate e2.
Hence the fact that the span is composed sequentially, i.e., by adding the spans.

Example 15.4. In SPARC, let expressions compose sequentially.

W (let y = f(x) in g(y) end) = 1 + W (f(x)) + W (g(y))
S(let y = f(x) in g(y) end) = 1 + S(f(x)) + S(g(y))

90 CHAPTER 15. COST MODELS

Note that all the rules for work and span have the same form except for parallel appli-
cation, i.e., (e1 || e2). Recall that parallel application indicates that the two expressions can
be evaluated in parallel, and the result is a pair of values containing the two results. In this
case we use maximum for combining the span since we have to wait for the longer of the
two. In all other cases we sum both the work and span. Later we will also add a parallel
construct for working with sequences.

Example 15.5. The expression (fib(6) || fib(7)) runs the two calls to fib in parallel and
returns the pair (8, 13). It does work

1 + W (fib(6)) + W (fib(7))

and span

1 + max (S(fib(6)), S(fib(7))).

If we know that the span of fib grows with the input size, then the span can be simplified
to 1 + S(fib(7)).

Remark. When assuming purely functional programs, it is always safe to run things in
parallel if there is no explicit sequencing. For the expression e1 + e2, for example, it is safe
to evaluate the two expressions in parallel, which would give the rule

S(e1 + e2) = max (S(e1), S(e2)) + 1 ,

i.e., we wait for the later of the two expression fo finish, and then spend one additional unit
to do the addition. However, in this book we use the convention that parallelism has to be
stated explicitly using ||.

Definition 15.3 (Average Parallelism). Parallelism, sometimes called average parallelism,
is defined as the work over the span:

P =
W

S
.

Parallelism informs us approximately how many processors we can use efficiently.

Example 15.6. For a mergesort with work Θ(n log n) and span Θ(log2 n) the parallelism
would be Θ(n/ log n).

Example 15.7. Consider an algorithm with work W (n) = Θ(n3) and span S(n) = Θ(n log n).
For n = 10, 000, P (n) ≈ 107, which is a lot of parallelism. But, if W (n) = Θ(n2) ≈ 108 then
P (n) ≈ 103, which is much less parallelism. Note that the decrease in parallelism is not
because of an increase in span but because of a reduction in work.

Designing Parallel Algorithms. In parallel-algorithm design, we aim to keep parallelism
as high as possible. Since parallelism is defined as the amount of work per unit of span, we
can do this by decreasing span. We can increase parallelism by increasing work also, but
this is usually not desirable. In designing parallel algorithms our goals are:

1. to keep work as low as possible, and

2. LANGUAGE BASED MODELS 91

2. to keep span as low as possible.

Except in cases of extreme parallelism, where for example, we may have thousands or
more processors available to use, the first priority is usually to keep work low, even if it
comes at the cost of increasing span.

Definition 15.4 (Work efficiency). We say that a parallel algorithm is work efficient if it per-
form asymptotically the same work as the best known sequential algorithm for that prob-
lem.

Example 15.8. A (comparison-based) parallel sorting algorithm with Θ(n log n) work is
work efficient; one with Θ(n2) is not, because we can sort sequentially with Θ(n log n)
work.

Note. In this book, we will mostly cover work-efficient algorithms where the work is the
same or close to the same as the best sequential time. Among the algorithm that have the
same work as the best sequential time, our goal will be to achieve the greatest parallelism.

2.2 Scheduling

Scheduling involves executing a parallel program by mapping the computation over the
processors in such a way to minimize the completion time and possibly, the use of other
resources such as space and energy. There are many forms of scheduling. This section de-
scribes the scheduling problem and briefly reviews one particular technique called greedy
scheduling.

2.2.1 Scheduling Problem

An important advantage of the work-span model is that it allows us to design parallel
algorithms without having to worry about the details of how they are executed on an actual
parallel machine. In other words, we never have to worry about mapping of the parallel
computation to processors, i.e., scheduling.

Scheduling can be challenging, because a parallel algorithm generates independently
executable tasks on the fly as it runs, and it can generate a large number of them, typically
many more than the number of processors.

Example 15.9. A parallel algorithm with Θ(n/ lg n) parallelism can easily generate millions
of parallel subcomptutations or task at the same time, even when running on a multicore
computer with 10 cores. For example, for n = 108, the algorithm may generate millions of
independent tasks.

Definition 15.5 (Scheduler). A scheduling algorithm or a scheduler is an algorithm for
mapping parallel tasks to available processors. The scheduler works by taking all parallel
tasks, which are generated dynamically as the algorithm evaluates, and assigning them to
processors. If only one processor is available, for example, then all tasks will run on that
one processor. If two processors are available, the task will be divided between the two.

Schedulers are typically designed to minimize the execution time of a parallel compu-
tation, but minimizing space usage is also important.

92 CHAPTER 15. COST MODELS

2.2.2 Greedy Scheduling

Definition 15.6 (Greedy Scheduler). We say that a scheduler is greedy if whenever there is
a processor available and a task ready to execute, then it assigns the task to the processor
and starts running it immediately. Greedy schedulers have an important property that is
summarized by the greedy scheduling principle.

Definition 15.7 (Greedy Scheduling Principle). The greedy scheduling principle postulates
that if a computation is run on P processors using a greedy scheduler, then the total time
(clock cycles) for running the computation is bounded by

TP < W
P + S

where W is the work of the computation, and S is the span of the computation (both mea-
sured in units of clock cycles).

Optimality of Greedy Schedulers. This simple statement is powerful.

Firstly, the time to execute the computation cannot be less than W
P clock cycles since we

have a total of W clock cycles of work to do and the best we can possibly do is divide it
evenly among the processors.

Secondly, the time to execute the computation cannot be any less than S clock cycles,
because S represents the longest chain of sequential dependencies. Therefore we have

Tp ≥ max

(
W

P
,S

)
.

We therefore see that a greedy scheduler does reasonably close to the best possible. In
particular W

P + S is never more than twice max (W
P , S).

Furthermore, greedy scheduling is particularly good for algorithms with abundant par-
allellism. To see this, let’s rewrite the inequality of the Greedy Principle in terms of the
parallelism P = W/S:

TP < W
P + S

= W
P + W

P

= W
P

(
1 + P

P

)
.

Therefore, if P � P , i.e., the parallelism is much greater than the number of processors,
then the parallel time TP is close to W/P , the best possible. In this sense, we can view
parallelism as a measure of the number of processors that can be used effectively.

Definition 15.8 (Speedup). The speedup SP of a P -processor parallel execution over a
sequential one is defined as

SP = Ts/TP ,

2. LANGUAGE BASED MODELS 93

where TS denotes the sequential time. We use the term perfect speedup to refer to a
speedup that is equal to P .

When assessing speedups, it is important to select the best sequential algorithm that
solves the same problem (as the parallel one).

Exercise 15.1. Describe the conditions under which a parallel algorithm would obtain near
perfect speedups.

Remark. Greedy Scheduling Principle does not account for the time it requires to com-
pute the (greedy) schedule, assuming instead that such a schedule can be created instan-
taneously and at no cost. This is of course unrealistic and there has been much work on
algorithms that attempt to match the Greedy Scheduling Principle. No real schedulers can
match it exactly, because scheduling itself requires work. For example, there will surely be
some delay from when a task becomes ready for execution and when it actually starts ex-
ecuting. In practice, therefore, the efficiency of a scheduler is quite important to achieving
good efficiency. Because of this, the greedy scheduling principle should only be viewed
as an asymptotic cost estimate in much the same way that the RAM model or any other
computational model should be just viewed as an asymptotic estimate of real time.

	Asymptotics
	Basics
	Big-O, big-Omega, and big-Theta
	Some Conventions

