
Parallel And Sequential Data
Structures and Algorithms

Randomized Algorithms I (Quickselect)

1

Learning Objectives

• Learn how to apply expectation and high probability bounds to
analyze work/span of randomized algorithms

• Understand the Order Statistics problem and develop an
efficient randomized algorithm for it

• Analyze the expected work and span of QuickSelect via
probability tools developed in earlier lectures

2

Analyzing Algorithms

3

Skittles Game

4

Problem (Skittles Game): The Skittles game is played with a fair coin and
a pile of 𝑛 Skittles. It is a single-player game played in rounds. Initially
there are 𝑠 = 𝑛 Skittles. Each round consists of the player flipping the coin
once. If it comes up heads, then the player eats 𝑠/2 (rounded up) of the
Skittles and there are 𝑠/2 (rounded down) remaining. If it comes up tails,
the player proceeds to the next round without eating any Skittles. The
game ends when there are no Skittles remaining.

We are interested in the random variable 𝑅(𝑛) which is the number of
rounds the game lasts.

Skittles Game Bound Proof

5

Theorem (Skittles Game Bound): The Skittles game will end in 5log2𝑛
rounds with high probability. In other words, 𝑅 𝑛 ∈ 𝑂(log 𝑛) w.h.p.

First, let’s modify the game slightly:

• Let the number of skittles we eat when we get heads to be 𝑠/2 rather
than ڿ s/2ۀ .

• The game ends when the number of skittles we have goes below 1.

It turns out that the games (using the same coinflips) end in the same number
of rounds.

(You can prove by induction that 𝑦𝑟 ≤ 𝑥𝑟 < 1 + 𝑦𝑟, where 𝑦𝑟 , 𝑥𝑟 = the number of
skittles at round 𝑟 of the original game and the modified game, respectively.)

6

Theorem (Skittles Game Bound): The Skittles game will end in 5log2𝑛
rounds with high probability. In other words, 𝑅 𝑛 ∈ 𝑂(log 𝑛) w.h.p.

Proof: Let 𝑋𝑟 = (a RV) be the number of Skittles remaining after 𝑟 rounds.
Let 𝑠𝑟 = the actual number that occur in a specific run of the algorithm.

• On any round, we have a 1/2 probability of flipping heads, which reduces the size
by 1/2. Otherwise, the size is unchanged

1

2
𝑠𝑟 prob.

1

2

𝑠𝑟 prob.
1

2

⟹ 𝔼[𝑋𝑟+1|𝑋𝑟 = 𝑠𝑟] =
1

2

1

2
𝑠𝑟 +

1

2
𝑠𝑟 =

3

4
𝑠𝑟

Skittles Game Bound Proof

• Thus, 𝑋𝑟+1 =

7

1

2
𝑠𝑟 prob.

1

2

𝑠𝑟 prob.
1

2

⟹ 𝔼 𝑋𝑟+1|𝑋𝑟 = 𝑠𝑟 =
3

4
𝑠𝑟𝑋𝑟+1 =

Expecting the Expected

This step depends on something called The Law of Total Expectation, which says this: For
any two random variables 𝑌 and 𝑋 the following holds:

𝔼 𝑌 =෍

𝑥

𝔼 𝑌 𝑋 = 𝑥 Pr 𝑋 = 𝑥

The notation 𝔼 𝑌 𝑋 = 𝑥 refers to conditional expectation… It’s the expectation of 𝑌 given
that 𝑋 = 𝑥. You don't need to understand this for this class.

⟹ 𝔼 𝑋𝑟+1 =
3

4
𝔼 𝑋𝑟

Skittles Game Bound Proof (Cont.)

8

Theorem (Skittles Game Bound): The Skittles game will end in 5log2𝑛
rounds with high probability. In other words, 𝑅 𝑛 ∈ 𝑂(log 𝑛) w.h.p.

Proof:

• We now unroll the recurrence to get 𝔼[𝑋𝑟] = 𝑛
3

4

𝑟

• Additionally, Pr[𝑅(𝑛) > 𝑟] = Pr[𝑋𝑟 ≥ 1] ≤
𝔼[𝑋𝑟]

1
= 𝑛

3

4

𝑟

Markov’s Inequality

Skittles Game Bound Proof (Cont.)

9

Theorem (Skittles Game Bound): The Skittles game will end in 5log2𝑛
rounds with high probability. In other words, 𝑅 𝑛 ∈ 𝑂(log 𝑛) w.h.p.

Proof:

• To match this bound with the definition of high probability, we

want to find a value of 𝒓 that satisfies 𝑛
3

4

𝑟
<

1

𝑛𝑘

• Taking logs, and rearranging gives us

𝑟 > (𝑘 + 1)log4
3
𝑛 = (𝑘 + 1)

log2𝑛

log2(4/3)
≈ (𝑘 + 1)2.409log2𝑛

Skittles Game Bound Proof (Cont.)

10

Theorem (Skittles Game Bound): The Skittles game will end in 5log2𝑛
rounds with high probability. In other words, 𝑅 𝑛 ∈ 𝑂(log 𝑛) w.h.p.

Proof:

Since 2𝑘 ≥ 𝑘 + 1 and 5 ≥ 2 ∙ 2.409, we can choose 𝑟 = 𝑘 ∙ 5 log2𝑛.

Hence, Pr[𝑅(𝑛) > 𝑘 ∙ 5 log2𝑛] <
1

𝑛𝑘
so

𝑅 𝑛 ≤ 5 k log2𝑛 w.h.p. and 𝑅 𝑛 ∈ 𝑂 log 𝑛 w.h.p.

Skittles Game Lemma

11

Lemma (Skittles Lemma): Let 𝑋0 = 𝑛 and let 𝑋𝑟+1 be computed by a
random process from 𝑋𝑟 that guarantees that:

• 0 ≤ 𝑋𝑟+1≤ 𝑋𝑟,

• 𝔼 𝑋𝑟+1 ≤ 𝛼𝔼 𝑋𝑟 where 0 < 𝛼 < 1 is a constant.

Let 𝑅(𝑛) be a random variable which is the first round 𝑟 when 𝑋𝑟 < 1. Then
𝑅(𝑛) is 𝑂(log 𝑛) w.h.p.

(Specifically, 𝑅(𝑛) ≤ 𝛽log2𝑛 w.h.p., where 𝛽 = −2/log2𝛼.)

Order Statistics

12

Order Statistics

13

Definition (Rank): The rank-𝒌 element of a sequence is the 𝑘th element
when the sequence is sorted in ascending order (zero-indexing). For
example, 7 is the rank-5 element of [7,1,1,9,5,6,7,6].

Problem (Order Statistics): The order statistics problem takes a sequence
of integers 𝑆 and an integer 𝑘 as input. Given these, our algorithm is
supposed to return the rank-𝑘 element of 𝑆.

Inefficient Approach

14

• We could sort the sequence and return the 𝑘th element

fun rank_k(S : sequence<T>, k : int) -> T:
return sort(S)[k]

• This costs 𝑂(|𝑆| log |𝑆|) work and 𝑂(log2|𝑆|) span

• We sort the entire sequence just to get a single value out of it!

How can we make this faster…?

15

Randomization!

QuickSelect

16

QuickSelect (S, k)

17

• Pick a uniformly random pivot 𝑝 in 𝑆

• Split 𝑆 into two sequences (𝐿, 𝑅) around 𝑝

• 𝐿 contains all values smaller than 𝑝, 𝑅 contains all values larger

• Recurse on the side that contains the element we want

• If k < |𝐿|, the element we want must be in 𝐿

• If k ≥ |S| − |R|, the element we want must be in 𝑅

• Otherwise, our pivot is the element we want

QuickSelect ([7,1,1,9,5,6,7,6], 5)

18

𝒑 = 5

𝒑 = 7

𝑺 7, 1, 1, 9, 5, 6, 7, 6Looking for rank 5 in 𝑆

1, 1 7, 9, 6, 7, 6𝑳 𝑹5Looking for rank 2 in 𝑅

𝑳 6, 6 9 𝑹7, 7Returns rank 0 in the pivot area

QuickSelect

19

fun quickselect(S : sequence<T>, k : int) -> T:
p = a uniformly random element of S
L = filter(fn x => (x < p), S)
R = filter(fn x => (x > p), S)
if k < |L|: return quickselect(L, k)
else if k >= |S|-|R|: return quickselect(R, k - (|S|-|R|))
else: return p

Analysis of QuickSelect

20

Theorem (QuickSelect Recursion Depth): On a sequence of length 𝑛,
quickselect terminates in 5 log2𝑛 recursive calls with high probability.

Proof:
• Let 𝑋𝑟 = length of array on which quickselect is being called

• Initially 𝑟 = 0 and 𝑋0 = 𝑛

• The algorithm may terminate at this round, but if it does not, then we let

𝑋𝑟+1 be the size of the recursive call

• Note that 𝐿 and 𝑅 from the partitioning step have fewer elements than
𝑆 because the pivot element is in 𝑆 but not in 𝐿 or 𝑅. Thus, 𝑋𝑟+1 < 𝑋𝑟

Analysis of QuickSelect

21

Proof:

• In the worst case, the rank 𝑘 will be such that the algorithm always does the
recursive call into the larger part.

• Let 𝑛’ = 𝑋𝑟, the current size of the array

• If 𝑛’ is even then the size of 𝑋𝑟+1 is chosen uniformly from among [𝑛’/2, 𝑛’ − 1]. The
average value of these is 3/4𝑛’ – 1/2

• If 𝑛’ is odd then the size of 𝑋𝑟+1 is chosen uniformly from among [(𝑛’ – 1)/2, 𝑛’ − 1].
The average value of these is 3/4(𝑛’ – 1)

• Thus, 𝔼[𝑋𝑟+1 𝑋𝑟 <
3

4
𝑋𝑟 ⟹ 𝔼 𝑋𝑟+1 <

3

4
𝔼 𝑋𝑟 .

Theorem (QuickSelect Recursion Depth): On a sequence of length 𝑛,
quickselect terminates in 5 log2𝑛 recursive calls with high probability.

Analysis of QuickSelect

22

Theorem (QuickSelect Recursion Depth): On a sequence of length 𝑛,
quickselect terminates in 5 log2 𝑛 recursive calls with high probability.

Proof:

• To summarize: 𝔼[𝑋𝑟+1] <
3

4
𝔼[𝑋𝑟] , and 𝑋𝑟+1 < 𝑋𝑟

• So, the Skittles Lemma applies and gives the desired result.

Analysis of QuickSelect

23

Theorem (Cost of QuickSelect): The expected work of quickselect on a
sequence of length 𝑛 is 𝑂(𝑛). The span is 𝑂(log2𝑛) with high probability.

Proof:

• On each round of quickselect, we do 𝑂(𝑛) work where 𝑛 is the size of the
input sequence for that round

• Picking a uniformly random element takes constant time

• Partitioning the sequence requires two filter operations which each take 𝑂(𝑛) work

• We can therefore find the expected work of the overall algorithm via the
following recurrence

𝑊 𝑛 = 𝑊 3/4 𝑛 + 𝑂 𝑛 ⟹ 𝑂(𝑛)

Analysis of QuickSelect

24

Theorem (Cost of QuickSelect): The expected work of quickselect on a
sequence of length 𝑛 is 𝑂(𝑛). The span is 𝑂(log2𝑛) with high probability.

Proof:

• On each round of quickselect, we do 𝑂 log 𝑆 ≤ 𝑂(log 𝑛) span where 𝑆
is the input sequence for that round

• Picking a uniformly random element takes constant time

• The filter operations have logarithmic span

• The recursion depth is 𝑂(log 𝑛) with high probability, therefore

𝑆 𝑛 = 𝑂(log 𝑛 ⋅ log 𝑛) ⟹ 𝑂(log2𝑛)

Summary

• The Skittles game gives us an example of how to derive/prove
high probability bounds
• Generalizable into the Skittles Lemma

• QuickSelect give us an expected 𝑂(𝑛) work and expected
𝑂(log2𝑛) span algorithm to solving the Order Statistics problem

• In general, randomized algorithms can give us solutions that
work more efficiently in expectation than a corresponding
deterministic algorithm

25

	Slide 1: Parallel And Sequential Data Structures and Algorithms
	Slide 2: Learning Objectives
	Slide 3: Analyzing Algorithms
	Slide 4: Skittles Game
	Slide 5: Skittles Game Bound Proof
	Slide 6: Skittles Game Bound Proof
	Slide 7: Expecting the Expected
	Slide 8: Skittles Game Bound Proof (Cont.)
	Slide 9: Skittles Game Bound Proof (Cont.)
	Slide 10: Skittles Game Bound Proof (Cont.)
	Slide 11: Skittles Game Lemma
	Slide 12: Order Statistics
	Slide 13: Order Statistics
	Slide 14: Inefficient Approach
	Slide 15: How can we make this faster…?
	Slide 16: QuickSelect
	Slide 17: QuickSelect (S, k)
	Slide 18: QuickSelect ([7,1,1,9,5,6,7,6], 5)
	Slide 19: QuickSelect
	Slide 20: Analysis of QuickSelect
	Slide 21: Analysis of QuickSelect
	Slide 22: Analysis of QuickSelect
	Slide 23: Analysis of QuickSelect
	Slide 24: Analysis of QuickSelect
	Slide 25: Summary

