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Learning Objectives

• Recall basic probability tools to analyze random processes

• Identify the various different classes of randomized algorithms

• Apply the laws of expectation to solve randomized problems

• Learn how to apply expectation and high probability bounds to 
analyze work/span of randomized algorithms
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Basic Probability
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Definitions
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Sample space (Ω): Set of possible outcomes of a “well defined 
experiment”.  We’re doing discrete probability in this class, so Ω is finite 
or countably infinite.

Events: Arbitrary subsets of Ω (usually denoted by capital letters like A).

Probability measure (Pr): Pr : 2Ω → ℝ with
1. 0 ≤ Pr(A) ≤ 1 for any event A
2. If A ∩ B = ∅ then Pr(A) + Pr(B) = Pr(A ∪ B)
3. Pr(Ω) = 1
4. Since we’re being discrete just give each outcome x a Pr(x).  And the 

probability of an event is just the sum of the Pr() of all outcomes in A.

Independence: A and B are independent if Pr(A ∩ B) = Pr(A) ᐧ Pr(B)



Example

5

5

Random Distance Run: Assume we have two dice. Let D1 be the value 
that the first die rolls, and D2 be the value that the second die rolls. Our 
sample space is the set of possible rolls for the two dice, and D1 and D2 
each take outcomes from the sample space and map them to real 
numbers in {1, 2, 3, 4, 5, 6}.

Here Ω = { (1,1), (1,2), … (6,5), (6,6) }      |Ω| = 36

The probability measure for two fair dice is that each of the 36 outcomes 
has equal probability, namely 1/36.



Example contd.
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Random Distance Run: Assume we have two dice. Let D1 be the value 
that the first die rolls, and D2 be the value that the second die rolls. Our 
sample space is the set of possible rolls for the two dice, and D1 and D2 
each take outcomes from the sample space and map them to real 
numbers in {1, 2, 3, 4, 5, 6}.

Let X = the event that D1 =  1.  X = {(1,1),(1,2),...,(1,6)}     Pr(X) = 6/36 = 1/6.
Let Y = the event that D2 = 3.  Y = {(1,3),(2,3),...,(6,3)}  Pr(Y) = 6/36 = 1/6.

Pr(X∩Y) = Pr{(1,3)} = 1/36 = Pr(X) ᐧ Pr(Y) …  Thus X and Y are independent.



Venn Diagrams
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We said that if A ∩ B = ∅ then Pr(A) + Pr(B) = Pr(A ∪ B).  More generally, for 
arbitrary events A and B we have:

Pr(A) + Pr(B)  =  Pr(A ∪ B) + Pr(A ∩ B)

This can be visualized in the following Venn Diagram:



Union Bound
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It follows that:

Pr(A ∪ B)   ≤   Pr(A) + Pr(B)

This is known as the Union Bound.



Random Variables
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A random variable X is a function X: Ω → ℝ

This endows each element of the RANGE of X with a probability.

Namely:



Visualizing Random Variables
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Consider a random variable X in our two dice example.
X: (a,b) ➡ a+b

What is Pr(X=4)?   It’s Pr({1,3}) + Pr({2,2}) + Pr({3,1}) = 1/12

What about other values besides 4?  The whole RV is shown below.



Sampling: An Alternative Intuition for RVs

11

A RV can be imagined as a randomized algorithm to sample the RV.  This 
algorithm uses sources of randomness (e.g. coin flips or sampling other 
RVs) and outputs a number.  In this fashion the algorithm produces a 
sample value of the RV.

It will often be useful to allow the sampling algorithm to depend on some 
parameter, e.g. an integer n.
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Alternative Intuition for RVs

For example.  Consider a RV which flips a fair coin until it comes up heads, 
and outputs the number of coin flips done.

What does the graphical representation of this RV look like?



Alternative Intuition for RVs
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For example.  Consider a RV which flips a fair coin until it comes up heads, 
and outputs the number of coin flips done.

What does the graphical representation of this RV look like?



More Definitions
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Independence: Two random variables are independent if their events are 
independent.  I.e.

Pr(X=a, Y=b)   =   Pr(X=a) Pr(Y=b)         ∀a,b



More Definitions
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Expected Value: Weighted average over all possible outcomes of some 
random variable X. More formally, 

Indicator Random Variable: IE represents the occurrence of event E. IE = 1 if 
event E occurs or 0 otherwise. This is useful because                         .



Combining RVs
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Combining RVs:  X + Y is a RV where 

Similarly for other functional operators.



Combining RVs
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Alternatively, using the algorithmic sampling definition, X+Y is the following 
sampling algorithm for X+Y:

sample(X+Y):
    return (sample(X) + sample(Y))

Combining RVs:  X + Y is a RV where 

Similarly for other functional operators.



Practice
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Random Distance Run: Assume we have two dice. There are two random 
variables.

D1 = roll of die #1
D2 = roll of die #2

1. What is the expected value of D1?
2. What is the expected value of D1+D2?3,5

E D D E D ELD
3.5 35 7



Theorems
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Linearity of Expectation: For two random variables X and Y, the expected 
value of their sum is the sum of their expected values. Formally,

Note that this is true even if X and Y are not independent!

Product of Expectation: For two independent random variables X and Y, 
the expected value of their product is the product of their expected values. 
Formally,



Proofs
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1. 𝔼[D1 D2] = 
2. 𝔼[D1 D2 where D1 and D2 are “entangled”] = 
3. 𝔼[D1 +D2 where D1 and D2 are “entangled”] = 
4. 𝔼[max (D1 , D2)] =

Practice
Random Distance Run: Assume we have two dice. There are two random 
variables.

D1 = roll of die #1
D2 = roll of die #2

494 124
1
14
9 16 25 3616 156

436



Final Definitions
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Union Bound: For any two events A and B, the probability that either of 
them happens is upper bounded by their total probability, i.e.

Conditional Probability: The conditional probability of A given B, written 
as Pr(A | B), gives us the probability A happens assuming B has happened. 
It is defined to be as follows:

Notice how Pr(A | B) = Pr(A) when A and B are independent.



Tools
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Harmonic Numbers
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The nth harmonic number Hn is defined as the sum of the reciprocals of the 
first n positive integers, i.e.

Theorem: The nth harmonic number Hn, satisfies

In other words, Hn= ϴ(log n), which we are happy to see in algorithms!



Exercise

25

25

Car Clusters: Suppose n cars are driving along a straight line, initially 
spaced so that none are touching. Each car is assigned a distinct maximum 
speed, chosen uniformly at random in [1,n]. Cars accelerate up to their 
maximum speed, but if a car reaches the one in front, it slows down to 
match that car’s speed. (They’re under cruise control.)

A cluster is a group of cars that end up driving together at the same speed. 
How many clusters should we expect?



Exercise
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s1

How does s1 compare to the 
rest in that cluster?



Exercise
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s1s2s3

What can we say about s1, s2, and s3 ? slowest car in 
the cluster



Exercise
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s1s2s3

slowest car in 
the clusters3 < s2 < s1



Exercise
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Therefore the front car in any cluster is slower than all cars to its right.

Therefore the number of clusters is the number of cars that are slower than 
all of the cars to its right.

The distinct speeds are assigned randomly.  So what is the probability that 
the i’th car from the right is the slowest among all those to its right?

s1s2s3

s3 < s2 < s1 slowest car in 
the cluster



Exercise

30

30

Therefore the front car in any cluster is slower than all cars to its right.

Therefore the number of clusters is the number of cars that are slower than 
all of the cars to its right.

The distinct speeds are assigned randomly.  So what is the probability that 
the i’th car from the right is the slowest among all those to its right?

s1s2s3

s3 < s2 < s1 slowest car in 
the cluster

Answer:           Make Ii this indicator variable.  𝔼[#clusters] = 𝔼[I1+...+In] = 
1
i Hn



Tail Bounds
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Theorem
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Markov’s Inequality: For a random variable X which is always greater than 
or equal to 0, the following tail bound holds:

Intuitively, this means that if we have a probability distribution for X with 
some expected value 𝔼[X], then Markov’s inequality says we can’t be above 
𝔼[X] very often.



Theorem
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Markov’s Inequality: For a random variable X which is always greater than 
or equal to 0, the following tail bound holds:

This distribution has expectation 𝔼[X].  If another distribution has more 
mass in the x ≥ a region, then that distribution’s expectation is > 𝔼[X].

Proof: Suppose X had this distribution:



Analyzing Algorithms
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Randomized Algorithms

35

35

Las Vegas Algorithm: A randomized algorithm whose cost bounds are a 
random variable, but will always return the correct result.

Monte Carlo Algorithm: A randomized algorithm whose cost bounds are 
deterministic, but it may fail or return incorrect answers.  The context is 
usually a minimization problem, where the returned answer is a valid 
solution, but might not be of minimum cost.  We know a probability p>0 that 
it will be optimum.



Randomized Algorithms

36

36

Las Vegas Algorithm: A randomized algorithm whose cost bounds are a 
random variable, but will always return the correct result.

Monte Carlo Algorithm: A randomized algorithm whose cost bounds are 
deterministic, but it may fail or return incorrect answers.  The context is 
usually a minimization problem, where the returned answer is a valid 
solution, but might not be of minimum cost.  We know a probability p>0 that 
it will be optimum.

Exercise: Can we turn a Las Vegas algorithm into a Monte Carlo algorithm?

Mnemonic for remembering this definition
In the Monte Hall problem youmake mistakes



Randomized Algorithms
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Note that for Monte Carlo algorithms, you can run them repeatedly in order 
to amplify the probability that the correct solution has been found.  

# runs Probability that the 
best solution found 
is optimal

1 p

2

3

1/p

n/p

1 3 as n a

1 1 pp
1 1 p 3

I I P 1

1 In for large n



QuickSort
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Algorithm (QuickSort):

fun quicksort(S : sequence<T>) -> sequence<T>:
  if length(S) <= 1:

return S
  p = uniform_random_element(S)
  L = filter(fn x => (x < p), S)
  R = filter(fn x => (x > p), S)
  M = filter(fn x => (x == p), S)
  sortedL, sortedR = parallel (quicksort(L), quicksort(R))
  return sortedL + M + sortedR 

Exercise: Is this a Las Vegas or Monte Carlo algorithm?

T n T n 1 M

n
is possible
but improbable

Las Vegas



High Probability
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Definition: We say that a random variable W(n) ≤ f(n) with high probability 
(w.h.p.) if there exists a constant n0 such that for any integer value of k ≥ 1 
and any n ≥ n0:

We will also write W(n) ∈ O(f(n)) w.h.p. if W(n) ≤ c · f(n) w.h.p. for some 
constant c.

We are essentially imposing a very strict tail bound on the random variable 
W(n).  An equivalent (sometimes more convenient) way to view it is



Theorem
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Max Preserves w.h.p.: Let S(n) be a non-negative random variable, and let 
T(n) = max(S(n), . . . ,S(n)), where there are n (not necessarily independent) 
copies of S(n) in the max. If S(n) ≤ f(n) w.h.p. then T(n) ≤ 2f(n) w.h.p. It follows 
that if S(n) ∈ O(f(n)) w.h.p. then so is T(n).



Theorem
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Max Preserves w.h.p.: Let S(n) be a non-negative random variable, and let 
T(n) = max(S(n), . . . ,S(n)), where there are n (not necessarily independent) 
copies of S(n) in the max. If S(n) ≤ f(n) w.h.p. then T(n) ≤ 2f(n) w.h.p. It follows 
that if S(n) ∈ O(f(n)) w.h.p. then so is T(n).

Proof: 
Pr(T(n) > (k+1)f(n)) ≤ n Pr(S(n) > (k+1)f(n))         [Union Bound]

But the RHS is at most  n/nk+1 = 1/nk by virtue of S(n) ≤ f(n) w.h.p.
Also note that 2k ≥ k+1, so we can write: 

Pr(T(n) > k*2*f(n)) ≤ Pr(T(n) > (k+1)f(n)) ≤ 1/nk

which is the definition of T(n) ≤ 2f(n) w.h.p.  



Skittles Game
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Skittles Game: The Skittles game is played with a fair coin and a pile of n 
Skittles. It is a single-player game played in rounds. Initially there are s = n 
Skittles. Each round consists of the player flipping the coin once. If it 
comes up heads, then the player eats s/2 (rounded up) of the Skittles
and there are s/2 (rounded down) remaining. If it comes up tails, the player 
proceeds to the next round without eating any Skittles. The game ends 
when there are no Skittles remaining. We are interested in the random 
variable R(n) which is the number of rounds the game lasts.

Wait a minute…



Skittles Game
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Theorem
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Skittles Game Bound: The Skittles game will end in 5 log2 n rounds with 
high probability. In other words, R(n) ∈ O(log n) w.h.p.

Proof: 



Theorem
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Skittles Game Bound: The Skittles game will end in 5 log2 n rounds with 
high probability. In other words, R(n) ∈ O(log n) w.h.p.

Proof: 

NEXT LECTURE!



Summary
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• Learned about basic probability definitions and random variables

• Identified two different classes of random algorithms, our focus 
remains on Las Vegas algorithms and their runtime.

• Applied tail bound analysis in the form of Markov’s inequality and 
high probability bounds

• To be continued: high probability bounds on the Skittles Game


