Parallel And Sequential Data
Structures and Algorithms

Probability for Randomized Algorithms



Learning Objectives

* Recall basic probability tools to analyze random processes
* [dentify the various different classes of randomized algorithms
* Apply the laws of expectation to solve randomized problems

* Learn how to apply expectation and high probability bounds to
analyze work/span of randomized algorithms



Basic Probability



Definitions

@nple space (Q): Set of possible outcomes of a “well defined \
experiment”. We’re doing discrete probability in this class, so Q is finite

or countably infinite.

Events: Arbitrary subsets of Q) (usually denoted by capital letters like A).

Probability measure (Pr): Pr: 29 = R with

1. 0 <Pr(A) <1for any event A

2. If AN B=2then Pr(A)+ Pr(B) = Pr(A U B)

3. Pr(QQ)=1

4. Since we’re being discrete just give each outcome x a Pr(x). And the
probability of an event is just the sum of the Pr() of all outcomes in A.

wependence: A and B are independent if Pr(A N B) = Pr(A) - Pr(B) j




Example

(e

andom Distance Run: Assume we have two dice. Let D1 be the value \
that the first die rolls, and D2 be the value that the second die rolls. Our
sample space is the set of possible rolls for the two dice, and D, and D,

each take outcomes from the sample space and map them to real
numbersin{l, 2, 3,4, 5, 6}.

Here Q ={(11), (1,2), ... (6,5), (6,6)] 1QI=36

The probability measure for two fair dice is that each of the 36 outcomes

Qas equal probability, namely 1/36. /
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Example contd.

(e

andom Distance Run: Assume we have two dice. Let D1 be the value \
that the first die rolls, and D2 be the value that the second die rolls. Our
sample space is the set of possible rolls for the two dice, and D, and D,

each take outcomes from the sample space and map them to real
numbersin{l, 2, 3,4, 5, 6}.

Let X = the event that D1 =

1. X={(11),1,2),...,(1,6)} Pr(X)=6/36 =1/6.
Let Y = the event that D2 =3. Y ,

((1,3),(2,3),...,(6,3)} Pr(Y)=6/36 = 1/6.

((XDY) = Pr{(1,3)} = 1/36 = Pr(X) - Pr(Y) ... Thus XandY are independent/
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Venn Diagrams

arbitrary events A and B we have:

Pr(A) + Pr(B) =

Pr(A U B) + Pr(A N B)

\This can be visualized in the following Venn Diagram:

(We said that if A N B =2 then Pr(A) + Pr(B) = Pr(A U B). More generally, for\

J

ANB

Counted twice



Union Bound

-

It follows that:

Pr(A U B) < Pr(A) + Pr(B)

\This is known as the Union Bound.




Random Variables

-

A random variable X is a function X; Q =» R

This endows each element of the RANGE of X with a probability.

Namely:

= 7() — > "PV\ (8)
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Visualizing Random Variables

(Consider a random variable X in our two dice example.
X: (a,b) = a+b

What is Pr(X=4)? It's Pr({1,3)) + Pr({2,2)) + Pr((3)) = 1/12

QVhat about other values besides 4? The whole RV is shown below.

2
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Sampling: An Alternative Intuition for RVs

algorithm uses sources of randomness (e.g. coin flips or sampling other
RVs) and outputs a number. In this fashion the algorithm produces a
sample value of the RV.

It will often be useful to allow the sampling algorithm to depend on some
Qarameter, e.g. an integer n.

GRV can be imagined as a randomized algorithm to sample the RV. This\

/




Alternative Intuition for RVs

For example. Consider a RV which flips a fair coin until it comes up heads,
and outputs the number of coin flips done.

What does the graphical representation of this RV look like?

-

~
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Alternative Intuition for RVs

~

For example. Consider a RV which flips a fair coin until it comes up heads,
and outputs the number of coin flips done.

What does the graphical representation of this RV look like?
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More Definitions

-

independent. l.e.

Pr(X=a, Y=b)

\_

~

Independence: Two random variables are independent if their events are

= Pr(X=a) Pr(Y=b) Vab

/
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More Definitions

/Expected Value: Weighted average over all possible outcomes of some \
random variable X. More formally,

EX] =) Pr(a)-X(a) =) x-Pr(X =uz)

Indicator Random Variable: I represents the occurrence of event E. /_=1if
Q/ent E occurs or O otherwise. This is useful because E|Ig| = Pr(F). /
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Combining RVs

(- )

Combining RVs: X+YisaRVwhere Pr(X +Y =2) = ZPr =y),Ve+y=12

Similarly for other functional operators.

- ,

16



Combining RVs

(- )

Combining RVs: X+YisaRVwhere Pr(X +Y =2) = ZPr =y),Ve+y=12

Similarly for other functional operators.

- ,

Alternatively, using the algorithmic sampling definition, X+Y is the following
sampling algorithm for X+Y:

sample(X+Y):
\ return (sample(X) + sample(Y))

_/
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Practice

(Random Distance Run: Assume we have two dice. There are two random \
variables.

D1 = roll of die #1
D2 = roll of die #2

\_ v

4 )
1. What is the expected value of D,? 3.5 EIb+ D;_& = ELD 4 £] Dz]
2. What is the expected value of D.+D,? 7 ~384+385=7

. J
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Theorems

(Linearity of Expectation: For two random variables X and Y, the expected
value of their sum is the sum of their expected values. Formally,

E[X + Y] = E[X] + E[Y]
Q\lote that this is true even if X and Y are not independent! )

~N

(Product of Expectation: For two independent random variables X and Y, A
the expected value of their product is the product of their expected values.
Formally,

E[XY] = E[X|E[Y]
. Y,
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Practice

ﬁ?andom Distance Run: Assume we have two dice. There are two random \

variables.
D, = roll of die #1
D, = roll of die #2
(1 ED,D,- 194 < 125 N
2. E[D1D where D, and D, are “entangled”] =1+4+9+ 16+25+28) =} =153
3. E[D,+D, whereD andD are “entangled”]= 7
(4 E[max(D,,D,) L/ 7

.




Final Definitions

them happens is upper bounded by their total probability, i.e.
Pr(AU B) < Pr(A) + Pr(B)

It is defined to be as follows: .
Pr(ANB ﬂ@
Pr(A | B) = AN D)

Pr(B)
Qotice how Pr(A | B) = Pr(A) when A and B are independent.

ﬁnion Bound: For any two events A and B, the probability that either 01\

Conditional Probability: The conditional probability of A given B, written
as Pr(A | B), gives us the probability A happens assuming B has happened.

%
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Tools



Harmonic Numbers

(

first n positive integers, i.e.

The n' harmonic number H_is defined as the sum of the reciprocals of the

~

Inn< H, <lnn+1

U

1 1 1 a1
H _ — —|— — _|_ . e a _I_ — — —
"1 9 n Z 7
. - y
a " . L N
Theorem: The n™ harmonic number Hn, satisfies

In other words, H = ©(log n), which we are happy to see in algorithms!
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Exercise

/Car Clusters: Suppose n cars are driving along a straight line, initially \
spaced so that none are touching. Each car is assigned a distinct maximum
speed, chosen uniformly at random in [1,n]. Cars accelerate up to their
maximum speed, but if a car reaches the one in front, it slows down to
match that car’s speed. (They’re under cruise control.)

A cluster is a group of cars that end up driving together at the same speed.
Qow many clusters should we expect? /

o slo clo oo —
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Exercise

s1
obla@ialfily (G olpGielis G »GisaGialls ——

How does s1 compare to the
rest in that cluster?
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Exercise

s3 s2 s1
obls Gialls (o olbhs EEslls &&ETH —

What can we say about s1, s2, and s3 ? slowest car in
the cluster
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Exercise

s3 s2 s1
obla@ialfily (G olpGielis G »6isaGialls ——
!

53 < 52 < g1 slowest car in

the cluster

28



Exercise

s3 s2 s1
obls Gialls (o olbhs EEslls &ﬁﬁ? —

s3 <52 <91 slowest car in

the cluster

/Therefore the front car in any cluster is slower than all cars to its right. \

Therefore the number of clusters is the number of cars that are slower than
all of the cars to its right.

The distinct speeds are assigned randomly. So what is the probability that
\the i'th car from the right is the slowest among all those to its right? /
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Exercise

s3 s2 s1
obls Gialls (o olbhs EEslls &&E? —

s3 <52 <91 slowest car in

the cluster

/Therefore the front car in any cluster is slower than all cars to its right. \

Therefore the number of clusters is the number of cars that are slower than
all of the cars to its right.

The distinct speeds are assigned randomly. So what is the probability that
\he i'th car from the right is the slowest among all those to its right?

1
Gnswer: —— Make | this indicator variable. E[#clusters] = E[l +...+ ] "))




Tail Bounds




Theorem

Markov’s Inequality: For a random variable X which is always greater than
or equal to O, the following tail bound holds:

Pr(X >a) < Etx]

G /

Intuitively, this means that if we have a probability distribution for X with
some expected value E[X], then Markov’s inequality says we can’t be above
E[X] very often.
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Theorem

fMarkov’s Inequality: For a random variable X which is always greater than R
or equal to O, the following tail bound holds:

ElX

Pr(X >a) < Bd
g ¢ ,

Proof: Suppose X had this distribution:
ELX]
Q.
1~ ELX] e
@
© Q

This distribution has expectation E[X]. If another distribution has more
mass in the x > a region, then that distribution’s expectation is > E[X]. |



Analyzing Algorithms



Randomized Algorithms

ﬁas Vegas Algorithm: A randomized algorithm whose cost bounds are a \
random variable, but will always return the correct result.

Monte Carlo Algorithm: A randomized algorithm whose cost bounds are
deterministic, but it may fail or return incorrect answers. The context is
usually a minimization problem, where the returned answer is a valid
solution, but might not be of minimum cost. We know a probability p>0 that

it will be optimum. /
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Randomized Algorithms

ﬁas Vegas Algorithm: A randomized algorithm whose cost bounds are a \
random variable, but will always return the correct result.

Monte Carlo Algorithm: A randomized algorithm whose cost bounds are
deterministic, but it may fail or return incorrect answers. The context is
usually a minimization problem, where the returned answer is a valid
solution, but might not be of minimum cost. We know a probability p>0 that
it will be optimum.

[Exercise: Can we turn a Las Vegas algorithm into a Monte Carlo algorithm? ]

Muem onic ~-ﬂo.r y e rmem Eem‘yl9 T hic de*¢3w3+f0n: y
"Tu Lhe Monte Hall Problem yov maKe st fees!"




Randomized Algorithms

to amplify the probability that the correct solution has been found.

[Note that for Monte Carlo algorithms, you can run them repeatedly in order }

# runs

Probability that the
best solution found
is optimal

Y

[-C1-p)

|-C1-p)>

1/p

1~Cl-PYP o | -

n/p

l
I~ @n

!
e

(for large n) 7



QuickSort

Ggorithm (QuickSort): )
+

fun quicksort(S : sequence<T>) -> sequence<T>: TCW) - l (M‘- ')
if length(S) <= 1: S
return S — @ (V) )
uniform_random_element(S)

filter(fn x => (x < p), S) . '
filter(fn x => (x > p), S) ) P‘)cpf-é [Q,/

filter(fn x => (x == p), S)

sortedL, sortedR = parallel (quicksort(L), quicksort(R)) JDJ_t— 'mP"Dbﬁ

P
L
R
M

return sortedL + M + sortedR

[Exercise: Is this a Las Vegas or Monte Carlo algorithm? Loac \/egq_g ]
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High Probability

/Definition: We say that a random variable W(n) < f(n) with high probability\
(w.h.p.) if there exists a constant n, such that for any integer value of k > 1
and any n2n,; 1
Pr(W(n) < k- f(n) 21— —
n

We will also write W(n) € O(f(n)) w.h.p. if W(n) < c - f(n) w.h.p. for some

\constant C. /

We are essentially imposing a very strict tail bound on the random variable
W(n). An equivalent (sometimes more convenient) way to view it is

Pr(W(n) > k- f(n)) < n—lk
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Theorem

4 )
Max Preserves w.h.p.: Let S(n) be a non-negative random variable, and let
T(n) = max(S(n), . . .,S(n)), where there are n (not necessarily independent)

copies of S(n) in the max. If S(n) < f(n) w.h.p. then T(n) < 2f(n) w.h.p. It follows
that if S(n) € O(f(n)) w.h.p. then so is T(n).
_
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Theorem

4 )
Max Preserves w.h.p.: Let S(n) be a non-negative random variable, and let
T(n) = max(S(n), . . .,S(n)), where there are n (not necessarily independent)

copies of S(n) in the max. If S(n) < f(n) w.h.p. then T(n) < 2f(n) w.h.p. It follows
that if S(n) € O(f(n)) w.h.p. then so is T(n).
g

J
(Proof: \

Pr(T(n) > (k+1)f(n)) < n Pr(S(n) > (k+1)f(n)) [Union Bound]

But the RHS is at most n/n“*! = 1/nk by virtue of S(n) < f(n) w.h.p.
Also note that 2k > k+1, so we can write:

Pr(T(n) > k*2*f(n)) < Pr(T(n) > (k+1)f(n)) < 1/n*

\Which is the definition of T(n) < 2f(n) w.h.p.




Skittles Game

Skittles. It is a single-player game played in rounds. Initially there are s =n
Skittles. Each round consists of the player flipping the coin once. If it
comes up heads, then the player eats s/2 (rounded up) of the Skittles

and there are s/2 (rounded down) remaining. If it comes up tails, the player
proceeds to the next round without eating any Skittles. The game ends
when there are no Skittles remaining. We are interested in the random

Wait a minute...

G(ittles Game: The Skittles game is played with a fair coin and a pile of n\

\variable R(n) which is the number of rounds the game lasts. /
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Skittles Game




Theorem

Skittles Game Bound: The Skittles game will end in 5 log,, n rounds with
high probability. In other words, R(n) € O(log n) w.h.p.

Proof:
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Theorem

Skittles Game Bound: The Skittles game will end in 5 log,, n rounds with
high probability. In other words, R(n) € O(log n) w.h.p.

Proof:

NEXT LECTURE!
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Summary

* Learned about basic probability definitions and random variables

* [dentified two different classes of random algorithms, our focus
remains on Las Vegas algorithms and their runtime.

* Applied tail bound analysis in the form of Markov’s inequality and
high probability bounds

* To be continued: high probability bounds on the Skittles Game
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