Demystifying Al

Feature Learning

Instructor: Pat Virtue




Listen Learner
Chris Harrison, CMU

https://chrisharrison.net/index.php/Research/ListenLearner



https://chrisharrison.net/index.php/Research/ListenLearner

Games to warm up

1. https://www.sporcle.com/games/MrChewypoo/minimalist disney

2. https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-
slideshow

3. https://www.sporcle.com/games/MrChewypoo/minimalist



https://www.sporcle.com/games/MrChewypoo/minimalist_disney
https://www.sporcle.com/games/Stanford0008/minimalist-cartoons-slideshow
https://www.sporcle.com/games/MrChewypoo/minimalist
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Dimensionality Reduction

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Exercise: Human-defined Feature Space
Stepl: Write a bunch of digits 0-9 on post-it notes
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Exercise: Human-defined Feature Space

Step2: In groups, students try to organize digits on a 2-D coordinate plot
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Optional: label the extreme
ends of both coordinate axes




Exercise: Human-defined Feature Space

Step2: In groups, try to organize digits on a 2-D coordinate plot
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Exercise: Human-defined Feature Space
Step 3: Prediction!

1. Select three students: A,B,C }Wo holes
. g
2. Student A draws a new digit
and hands it to student B @ s
3. Student B thinks about where Curv> 10D
to plot it and comes up with ~ (o€ )] |
a 2-D coordinate, (x, y)

4. Student Clooks at the
coordinate and the plot (but
not the drawing from A) and
predicts the digit, 0-9



Exercise: Human-defined Feature Space
Step 4: Creation!

1. Select three students: A,B,C }Wo holes
. g
2. Student A draws a new digit
and hands it to student B @ s
3. Student B thinks about where Curv> 10D
to plot it and comes up with ~ (o€ )]
a 2-D coordinate, (x, y)

4. Student Clooks at the
coordinate and the plot (but
not the drawing from A) and
draws a new digit



Learning to Organize Data

Neural networks can learn to organization t

Image =2 (z1,2,) =2 Image
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Reminder: Image Classification

Demo of (Fully-connected) neural network to classify images of hand-
written digits

WWW.CS.rverson.ca/~aharley/vis



https://www.cs.ryerson.ca/~aharley/vis/fc/

Reminder: Image Classification

Demo of (Fully-connected) neural network to classify images of hand-

written digits
https://www.cs.ryverson.ca/~aharley/vis/fc/

Digit network

Output layer | 10 neurons

= r

Hidden layer 2 | 100 neurons

Hidgen layer 1 —

300 neurons
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https://www.cs.ryerson.ca/~aharley/vis/fc/

Poll 1

When we pass a single image through this network how many times
does RelLU(z) get called (assume RelLU(z) can only take a single number

not many)? v (1O
I VA
A 1 Digit network { \ l ’ ’
$<
B. 10 Output layer | 10 neurons
C. 100 TN T
Hidden layer 2 100 neurons
9. 300 Hiddeg layey 1 \

\ R \\ AR 1 L\
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https://www.cs.ryerson.ca/~aharley/vis/fc/




Digit Autoencoder

https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

A dist (xR

~ ~ ~ ~ ~
Q Q Q Q Q
3 3 3 3 3
= =~ S = n
X ~ N AN ) () A
~ ..___9
Input S X
28x28 = 784 pixels &
w
U Ul ~
o o N S S R
2 1Bl Bl=B| 1B] |5
c c = L @ @
- - - - - C
SL 3] 5] 18] 1] |8
wn wn wn a a a

Autoencoder network



https://cs.stanford.edu/people/karpathy/convnetjs/demo/autoencoder.html

Poll 2

We talked about using an
autoencoder to learn a 2-dimensional
feature vector [feature,, feature,].

Where in this network can we find
those two numbers?

A. Layer 3 input

@r 3 out@

C. Layer 3 weights

D. Layer 3 bias (offset)(intercept)
E. Layer 4 weights
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Dimensionality Reduction with Deep Learning

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov.
"Reducing the dimensionality of data with neural networks.”
Science 313.5786 (2006): 504-507.
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Isten Learner

https://chrisharrison.net/index.php/Research/ListenLearner




Autoencoder Demo
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Zhuoyue Lyu, Safinah Ali, and
Cynthia Breazeal. EAAI 2022.
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https://colab.research.google.com/gist/ZhuoyueLyu/5046225a9ae3675cf633c1df5f63be06/digits-interpolation-notebook-eaai.ipynb

Autoencoder Demo
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Exploring Feature Space

https://experiments.withgoogle.com/ai/melody-mixer/view/

Twinkle H ° Sparse H




Exploring Feature Space

https://experiments.withgoogle.com/ai/beat-blender/view/
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