Demystifying AI

Neural Networks

Instructor: Pat Virtue

Warm-up Exercise: Plotting Functions
Paper handout

Linear Regression

selling my car example

Regression for Non-linear data

Paper handout

Linear Regression With N-D inputs
D/

$$
\begin{aligned}
& \hat{y}=w x_{1}+b \\
& 2 D \\
& \hat{y}=w_{1} x_{1}+w_{2} x_{2}+b
\end{aligned}
$$

$$
\hat{y}=\left(\sum_{i=1}^{N} w_{i} x_{i}\right)+b
$$

Linear Regression

With N-D inputs

1-D linear function
$y=w_{1} x_{1}+b$

2-D linear function
$y=w_{1} x_{1}+w_{2} x_{2}+b$

3-D linear function
$y=w_{1} x_{1}+w_{2} x_{2}+w_{2} x_{2}+b$

N-D linear function
$y=\sum_{i=1}^{N} w_{i} x_{i}+b$

Network Diagrams

Linear functions

1-D linear function
$y=w_{1} x_{1}+b$

2-D linear function
$y=w_{1} x_{1}+w_{2} x_{2}+b$
3-D linear function
$y=w_{1} x_{1}+w_{2} x_{2}+w_{2} x_{2}+b$
N -D linear function

$\frac{y=\sum_{i=1}^{N} w_{i} x_{i}+b}{c}$

Linear plus ReLU
Rectified linear unit

$$
\begin{aligned}
a & =\operatorname{ReLU}(z) \\
& = \begin{cases}0 & \text { if } z<0 \\
z & \text { otherwise }\end{cases}
\end{aligned}
$$

Plotting Functions
Connecting functions
Plot the function $f_{3}(x)$ vs x

$$
\begin{aligned}
a_{1}=f_{1}(x)= & \max (0,1 x+2) \\
a_{2}=f_{2}(x)= & \max (0,1 x-2) \\
y= & f_{3}(x)=
\end{aligned}
$$

Neural Networks

https://www.cs.cmu.edu/~15181/tfp

Setup:

- Switch to the regression dataset that looks like the letter M
- Set the learning rate to 0.003

Steps:

- Set up your architecture: add as many hidden layers and neurons per layer as you like
- Click the play button
- Observe the resulting fit and loss (mean squared error)
- Repeat to try to use as few neurons a possible and still get a good fit

Three-neuron network Connecting functions

Plot the function $f_{3}(x)$ vs x

$$
\begin{aligned}
& a_{1}=f_{1}(x)=\max (0,1 x+2) \\
& a_{2}=f_{2}(x)=\max (0,1 x-2) \\
& y=f_{3}(x)=f_{1}(x)-f_{2}(x) \\
& 1 \cdot a_{1}+(-1) a_{2}+0
\end{aligned}
$$

