
Lecture 4 - Lists and Structural Induction

David M Kahn ∗

Summer 2022

1 Lists

Lists in SML are a built-in data type for storing arbitrary finite sequences of one
type of data. Most languages have some sort of data type like this, like Java’s
Arrays and Python’s lists. However, each language treats this sort of data type
a little differently. For SML, this means:

• Everything in the list must be the same type. This keeps the type sytem
clean and elegant.1

• There is no arbitrary access; no indexing into the list. In many languages
you can write something like lst[3] to access the 4th element of the list
lst, but not in SML. This is because index systems are more complicated
than we want our basic data types to be. Instead, SML opts for a more
naive data structure: the linked list. This simplicity will turn out to be
beneficial when it allows us to make use of structural induction.

Type t list for any element type t (there is no type that is just list without
a type parameter for the element)

Values

• [] the empty list; it may also be called “nil”.

• v1::v2::v3::. . . ::vn::[] a list of n other values “cons”-ed together; this
may also be written as [v1, v2, v3,. . . ,vn]

∗Adapted from Michael Erdmann’s Spring 2022 notes, in turn adapted from a draft of
Frank Pfenning

1This retriction to a single type is not actually that restrictive, as we will see later in the
course.

1



Expressions

• Make: The expressions that make lists include all list values, any use of
the cons operation :: which adds an element to the front of another list,
or the append operation @ which sticks two lists together

• Use: Casing is the preferred way to break up lists, like
case lst of [] => e1| hd::tl => e2, since [] and :: are also pat-
terns. (@ is not a pattern)

Typing

• Make:

– []:t list for any type t

– e1::e2:t list if e1:t and e2:t list

– e1 @ e2:t list if e1 and and e2 are both typed t list

• Use: Lists can be used by breaking them up with case statements in the
normal way. For example, case e1 of [] => e2| hd::tl => e3:t if

– e1:t
′ list

– e2:t

– e3:t assuming hd:t′ and tl:t′ list

Reduction left-to-right for binary operators, as usual

Special Notes Unlike most binary operators which are left associative, cons
:: is right associative. So a::b::c implicitly gets parenthesized as a::(b::c).
If you pay attention to the typing of cons, this is the only associativity that
makes sense.

2 Structural Induction

Structural induction is a special kind of induction that is performed on induc-
tively structured data, to prove that a property holds for all such data. For
data to be inductively structured, it must have at least one base value (like nil
[]), and also some number of ways of constructing new values out of old ones
(like cons ::) – we call the collection of both of these the data type’s (induc-
tive) constructors. Because lists have such a set of constructors, this means that
lists are a great target for structural induction. Later we will see that we can
structurally induct over other data types too.

We can actually derive structural induction from our usual induction over
natural numbers2. This can be done by having the number we induct on count

2We can also go the other direction, and derive induction over natural numbers from
structural induction. To go in this direction, note that natural numbers may be structured
with a base value of 0 and an inductive constructor of incrementation by 1 (successor).

2



the number of constructors used in the data type (plus one). Thus, for lists, the
base case of 0 corresponds to the case for the empty list, and the inductive step
going from n to n+ 1 corresponds to the step going from a list tl of length n to
a list hd::tl of length n+ 1. For lists, this is just induction on the list’s length!

However, it is useful to shortcut this process, and simply consider inductive
cases for each constructor directly. Each base value forms a base case, and each
way of making new values forms a different inductive step3. For the type t list,
this leaves us with the inductive principle:

for some predicate P, if

• P([]) holds

• P(hd::tl) holds assuming P(tl) for values hd:t and tl:t list

then P(lst) holds for all values lst:t list

There also exist the same variants we had before for induction: strong in-
duction and induction on a generalized predicate.

2.1 Example

Here is a nice proof example for showing how to use structural induction along-
side other proof principles.

First, let us assume that the following is the implementation of @, and assume
that this implementation is total4. Consider proving its totality yourself as an
exercise!

1 (*

2 * @ : int list * int list -> int list

3 * REQUIRES: true

4 * ENSURES: a @ b ==> a list containing all and only

5 * the elements of a followed by those b, maintaining order

6 *)

7 infix @

8 fun (lst1:int list) @ (lst2:int list) : int list =

9 (case lst1 of

10 [] => lst2

11 | hd::tl => hd :: (tl @ lst2)

12 )

Theorem 1. @ is associative, i.e., for int list values a, b, c

(a @ b) @ c ∼= a @ (b @ c)

3If there are only base values and no way of building bigger values from smaller, then
structural induction is proof by cases!

4In this course, we will either tell you that a function is total, or you will have to prove it
yourself.

3



Proof. We prove by structural induction over a.

Base Case a = []

For this case, we want to show ([] @ b) @ c ∼= [] @ (b @ c).
First we show that ([] @ b) @ c ∼= v1 for some value v1 by showing the

reduction ([] @ b) @ c =⇒ v, since extensional equivalence is closed under
reduction.

([] @ b) @ c =⇒ b @ c clause 1

=⇒ v1 (for some value v1) totality of @

Then we show that [] @ (b @ c) ∼= v1 as well, again via reduction.

[] @ (b @ c) =⇒ [] @ v1 (for the same v1 as above) totality of @

=⇒ v1 clause 1

Finally, because extensional equivalence is an equivalence relation, these two
facts mean that ([] @ b) @ c ∼= [] @ (b @ c), completing the case.

Inductive Step a = hd :: tl for int list values hd , tl
For this case, we want to show ((hd :: tl) @ b) @ c ∼= (hd :: tl) @ (b @ c),

assuming that (tl @ b) @ c ∼= tl @ (b @ c).
First, we show that ((hd :: tl) @ b) @ c ∼= hd :: ((tl @ b) @ c) via a

sequence of reductions and extensional equivalences. Note that the extensional
equivalence of the last line follows due the reduction that was ensured by totality.

((hd :: tl) @ b) @ c =⇒ (hd :: (tl @ b)) @ c clause 2

=⇒ (hd :: v2) @ c (for some value v2) totality of @

=⇒ hd :: (v2 @ c) clause 2
∼= hd :: ((tl @ b) @ c) tl @ b ∼= v2

Then, we show that (hd :: tl) @ (b @ c) ∼= hd :: ((tl @ b) @ c) similarly as
before.

(hd :: tl) @ (b @ c) =⇒ (hd :: tl) @ v1 (for some value v1) totality of @

=⇒ hd :: (tl @ v1) clause 2
∼= hd :: (tl @ (b @ c)) b @ c ∼= v1

Finally, using the inductive hypothesis that (tl @ b) @ c ∼= tl @ (b @ c), we
can relate the above two conclusions as hd :: ((tl @ b) @ c) ∼= hd :: (tl @ (b @ c)).
Since extensional equivalence is an equivalence relation, this means we can con-
clude ((hd :: tl) @ b) ∼= (hd :: tl) @ (b @ c), completing the case.

4



Note that we needed to use the totality of @ in the above proof. Without
it, we have no way of knowing that expressions like b @ c actually are valuable,
and we need to turn them into values to use our reduction rules. We also made
repeated use of referential transparency to swap around extensionally equivalent
subexpressions.

2.2 A Mathematical Digression

To be more aware of what we are doing mathematically when we induct, it is
key to realize that all forms of induction rely on the structure they are inducting
over being the least fixed point of its constructors. For natural numbers, this
means we take the the smallest set containing 0 and closed under adding 1, which
is the standard collection of natural numbers. For integer lists, this means we
take the the smallest set of values containing the empty list and closed under
cons-ing another int onto the front, which is the standard collection of finite
integer lists.

Note that if we added “infinity” to the above set of natural numbers, the set
is still closed under its constructors – infinity plus 1 is still infinity. Likewise,
adding infinite (v1::v2::v3::v4::. . . ) or looped (lst = v::lst) “lists” to
our set of list values would still give a set closed under the list constructors.
However, both these sets are larger than the previous sets named, since they
are strict supersets, and so are not what we consider when we induct.

Such a focus when inducting over SML lists is appropriate because the type
of lists is an inductive type, as are most types that you will see. This means that
the values of that type are only considered to be those in the smallest set closed
under its constructors, which are the same sets that induction acts on. As a
result, those infinite and looped “lists” are not actually lists, and it is perfectly
OK that our proof technique of induction misses them.

Thus, we can say that the length function for a list given below is total, even
though it would never terminate on an infinite or looped “list”.

1 (*

2 * len: int list -> int

3 * REQUIRES: true

4 * ENSURES: len lst evaluates to the length of lst

5 *)

6 fun len lst =

7 (case lst of

8 [] => 0

9 | _::tl => 1 + len tl

10 )

Do not take it for granted that every type you see in the wild is inductive.
For example, in OCaml, a cousin of SML, one can make looped lists. This can
make it difficult to reason fully about some languages, since induction would
not be sufficient. However, for right now with SML, we are only using inductive
types.

5



Some languages also have features to allow treating the set of values for
a type as the greatest fixed point of its constructors – such types are called
coinductive types. These correspond to a dual proof technique to induction
called coinduction. You need not worry about this technique right now, but it
is out there if you wanted to go beyond the course.

3 Tail Recursion

Tail recursion is an important optimization tool in the arsenal of a functional
programmer. This is a way of ordering recursive calls so that the machine
executing the code does not need to remember to do any additional computation
after the recursive call returns. This has a number of consequences for the
efficiency of the code.

3.1 Definitions

Tail Call Within the body of a function f, a function call is a tail call if f
does not inspect or compute with the result of that call; instead that call is the
“last” computation f does, and f returns the call’s result.

Tail Recursion A function is tail recursive if every call it makes to a recursive
function is a tail call, and each of those called recursive functions can themselves
be considered tail recursive.

A prototypical template (but not the only possible template) for a tail recursive
function is the following, where e1 and e2 are arbitrary expressions (that do
not make additional function calls), and p1 and p2 are appropriate patterns.

1 fun f x =

2 (case x of

3 p1 => e1

4 | p2 => f (e2)

5 )

Notice how our reduction rules would cause e2 to be computed before applying
f, so the call to f is a tail call.

3.2 Machine View

While we do not normally care to think about the implementation details of
the machine running our code, and it is not strictly-speaking necessary for the
course, doing so for tail recursion can be enlightening.

The machine running our code must track the environment to resolve vari-
ables, and also something called the return address which tells the machine
where in the code to return with any computed values. These are usually stored
in an area of memory called the call stack. Every time a function is called, a
new frame is usually added to call stack to store any new local variables that

6



call of the function uses, as well as the return address. When a function call
would return a value, it simply stores that value in a return register, pops the
code pointer back to its return address, deallocates its frame, and restores the
environment stored in the previous frame.

However, for tail recursive functions, the machine can make an optimization.
By definition, no computation is done with the return of the tail calls inside a
tail recursive function – instead the value returned from the tail call is just itself
returned by the function. This means the machine can forget the environment
it would normally store in a stack frame, since no variables are needed if no
computation will be done. This also means that the machine only needs to
remember the single return address of original function caller – when the tail
recursive function returns, by definition there is no computation remaining to do
in any level of its recursion, so the next computation to occur will be outside of
the tail recursive function, wherever it was originally called. Together, these two
facts mean there is nothing that needs to be stored in the call stack frames, so
the machine can save time and memory by just never allocating them. Instead,
the machine can treat the tail recursion like an imperative loop, which is a code
pattern it can execute efficiently.

3.3 Example

The following implementation len of the length function for lists is not tail
recursive, because len is not called as a tail call – after the recursive call to len

returns, the code performs the additional computation of adding one.

1 (*

2 * len : int list -> int

3 * REQUIRES: true

4 * ENSURES: len lst ==> the length of lst

5 *)

6 fun len (lst:int list) : int =

7 (case lst of

8 [] => 0

9 | _::tl => 1 + len tl

10 )

However, the following implementation lenT is tail recursive. Note how
it achieves tail recursion by introducing an accumulator and making use of a
helper function. This is a common pattern for achieving tail recursion.

1 (*

2 * lenHelp : int list * int -> int

3 * REQUIRES: true

4 * ENSURES lenHelp (lst , a) evaluates to a + length of lst

5 *)

6 fun lenHelp (lst:int list , acc:int) : int =

7 (case lst of

8 [] => acc

9 | _::tl => lenHelp (tl , acc + 1)

7



10 )

11

12 (*

13 * lenT : int list -> int

14 * REQUIRES: true

15 * ENSURES: lenT lst ==> the length of lst

16 *)

17 fun lenT (lst:int list) : int =

18 lenHelp (lst , 0)

We can visually see the effect of tail recursion by observing the execution
trace of each implementation.

For the non-tail recursive len, the execution trace bulges out in the middle,
since it must remember to increment for every element in the list. Recording
all of these increments requires an amount of extra memory proportional to
the length of the input list5. Just look how much of each line is devoted to
something other than the list!

1 len [1, 2, 3, 4, 5, 6, 7, 8]

2 ==> 1 + len [2, 3, 4, 5, 6, 7, 8]

3 ==> 1 + (1 + len [3, 4, 5, 6, 7, 8])

4 ==> 1 + (1 + (1 + len [4, 5, 6, 7, 8]))

5 ==> 1 + (1 + (1 + (1 + len [5, 6, 7, 8])))

6 ==> 1 + (1 + (1 + (1 + (1 + len [6, 7, 8]))))

7 ==> 1 + (1 + (1 + (1 + (1 + (1 + len [7, 8])))))

8 ==> 1 + (1 + (1 + (1 + (1 + (1 + (1 + len [8]))))))

9 ==> 1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + len [])))))))

10 ==> 1 + (1 + (1 + (1 + (1 + (1 + (1 + (1 + 0)))))))

11 ==> 1 + (1 + (1 + (1 + (1 + (1 + (1 + 1))))))

12 ==> 1 + (1 + (1 + (1 + (1 + (1 + 2)))))

13 ==> 1 + (1 + (1 + (1 + (1 + 3))))

14 ==> 1 + (1 + (1 + (1 + 4)))

15 ==> 1 + (1 + (1 + 5))

16 ==> 1 + (1 + 6)

17 ==> 1 + 7

18 ==> 8

However, the tail recursive lenT orders its computations to perform the in-
crementation earlier using an accumulator. Notice that this time, the amount
of each line devoted to something other than the list remains bounded by a con-
stant, and each line never makes reference to anything from a previous recursive
call’s function body.

1 lenT [1, 2, 3, 4, 5, 6, 7, 8]

2 ==> lenHelp ([1, 2, 3, 4, 5, 6, 7, 8], 0)

3 ==> lenHelp ([2, 3, 4, 5, 6, 7, 8], 0 + 1)

4 ==> lenHelp ([2, 3, 4, 5, 6, 7, 8], 1)

5 ==> lenHelp ([3, 4, 5, 6, 7, 8], 1 + 1)

5Specifically, each increment needs to be pointed to by a return address, and each return
address needs its own stack frame.

8



6 ==> lenHelp ([3, 4, 5, 6, 7, 8], 2)

7 ==> lenHelp ([4, 5, 6, 7, 8], 2 + 1)

8 ==> lenHelp ([4, 5, 6, 7, 8], 3)

9 ==> lenHelp ([5, 6, 7, 8], 3 + 1)

10 ==> lenHelp ([5, 6, 7, 8], 4)

11 ==> lenHelp ([6, 7, 8], 4 + 1)

12 ==> lenHelp ([6, 7, 8], 5)

13 ==> lenHelp ([7, 8], 5 + 1)

14 ==> lenHelp ([7, 8], 6)

15 ==> lenHelp ([8], 6 + 1)

16 ==> lenHelp ([8], 7)

17 ==> lenHelp ([], 7 + 1)

18 ==> lenHelp ([], 8)

19 ==> 8

9


