Lecture 2 - Patterns and Functions

David M Kahn *
Summer 2022

1 Patterns

Patterns are ways of referring to the structure of some value. There are (so far
in the course) 4 different kinds of patterns to be aware of:

e constants! — these patterns match only to the constant that they are

e variables — these match to any value, and bind that value to the variable
in the environment

e the wildcard (underscore) — this matches to any value, but does nothing
with it

e tuples of other patterns — this matches tuples of the same length where
each element matches the pattern in the same position

For example, (_, 5, x) is a pattern matching 3-tuples with a middle element
of 5, and the use of this pattern binds the third element of the tuple to x. This
happens to use all the pattern components we have gone over so far, but later
in the course we will learn some other patterns.

Multiple patterns are often used to consider different cases of what some
value looks like. For such uses, we will find that the patterns are separated with
the vertical line symbol |. This symbol is not itself a pattern.

One thing to keep in mind is SML patterns do not allow one to reuse vari-
ables. Thus, the “pattern” (x, x) is simply not allowed — it is not used match
pairs where both elements are the same. To do that, one would need to write
code like the following:

*Adapted from Michael Erdmann’s Spring 2022 notes, in turn adapted from a draft of
Frank Pfenning

1The constants cannot be functions or reals though. This is because there is no easy
way to check equality between them - there are infinitely many digits of precision between
real numbers, and infinitely many possible inputs between functions (which might not even
terminate). This is similar to the restrictions on the use of = and <>; you can only use constants
in a pattern that can be compared with = or <>.

S w N e

case p of (a, b) =>
if a=b
then
else

1.1 Case Expressions

One place patterns can be used is in case expressions. These can be used to
break up data into its constituent components, and also to branch based upon
how those components look. It is very general, can actually replace both if-
then-else and let-in-end expressions. If you are trying to use some compound
type, and the type is not a function, you probably will use the type through
breaking it up with a case expression.

Expression case ¢y of p; => e | ... | p, => e, where each p; is a
pattern
Typing case eg of p1 => ey | ... | p, => e, : t

if eg:t’ and, for each ¢,
e the pattern p; could apply to values of the type t’

e ¢;:t given the types of any new variables bound in p;

Reduction
ecase eg of py => e | ... | pp = e,
1
= case e, of p1 =>e1 | ... | pp => e,
. 1
if g = ¢,
1 .
ecase v of pp => e | ... | p, => e, = [env]e; where v is a value,

p; is the first pattern to match v, and env contains any new bindings to
the appropriate components of v that p; induces

Examples

e case (a, b) of e; => ey is a way to break up pairs, since we can now
use the variables a and b to refer to its elements, and is far preferable to
projections (e.g. #1) stylistically

e case e; of x => es is extensionally equivalent to (i.e, behaves exactly
like) the expression let val x = e; in ey end

e case e; of true => ey | false => e3 is extensionally equivalent to
(i.e., behaves exactly like) the expression if e; then es else eg

Special Notes It is highly recommended to always put parentheses around
case statements. This ensures they are parsed correctly, which otherwise is a
major source of errors, especially when case statements are nested.

Case statement patterns do not need to be exhaustive, but they will throw
an exception at runtime if no pattern matches the data being cased on. Also,
an error will be thrown if further clauses are written past when the clauses’
patterns become exhaustive.

1.2 Val Declarations

Val declarations can bind value components directly just like case statements,
as long as the pattern uses variables. Otherwise, if the pattern is a constant,
the effect of the let binding is a test that the value to be bound equals that
constant. Or if the pattern is a wildcard, the value to be bound is evaluated
and then discarded.

For example, consider using patterns in the declarations of our let state-
ments:

Expressions let p = e; in ey end where p is a pattern.

Typing The typing is the same as previous let expressions, except the vari-
ables typings assumed are those determined by the pattern p and the type of
€.

Reduction The reducton is the same as previous let expressions, except the
bindings made are those determined by the pattern p and the value of e;. Also,
if constants are used and the value of e; does not match those constants, then
an exception is thrown instead of reduction continuing.

Examples Here are some examples of val declarations using patterns.

e val x = 5 is our “normal” declaration, but it is already using a pattern
— the variable

e val (a, b) = (1, true) is another way to break up tuples — the first
element is bound to a and the second to b

e val _ = e evaluates e and throws the value away — this has no effect unless
e has side effects

e val (_, false) = e tests whether the second element of e evaluates to
false — if not, an error would be thrown at runtime

o O W=

© 00N Ol WN -

1.3 Functions

Patterns provide us with a special syntactic sugar (i.e., code shorthand) for
automatically casing on the input to a function. For functions like fn x => e,
to use this feature, the syntax is the following;:

fnpr =>e | ... | py=> e,

This is extensionally equivalent to:

fn x => case x of py => e | ... | p, => ¢,

2 Functions

2.1 Anonymous Functions

The functions we’ve been using so far, which look like fn x => e, are called
anonymous. This is because they do not come with a name. Lacking a name is
normal for expressions — we are not bothered by the fact that (true, 5 + 7)
has no special name, and likewise we should not be bothered that our functions
can lack names.

If we want to give an anonymous function a name, we can name it using a
declaration like so:

(*

* square : int -> int

* REQUIRES: true

* ENSURES: square x evaluates to x * x
*)

val square = fn (x:int) => x * x

It is also good practice to include a header for top-level functions, and to anno-
tated the function, as shown. (Note that anonymous functions do not allow you
to annotate the return type directly.) It is also good practice to include tests,
which have not been shown.

In the expression fn x => e, we call x the formal parameter of the function,
and e the body.

2.2 Recursive Functions

While there is no direct expression for recursive functions like there is for anony-
mous ones, there is a declaration:

(*

¥ fac : int -> int

* REQUIRES: x >= 0

* ENSURES: fac x evaluates to x!
*)

fun fac (x:int) : int =
if x = 0
then 1
else x * fac (x - 1)

Again, it is good practice to include a header like that shown. (This time the
return type can be annotated directly.)

We can reason about these recursive functions similarly to anonymous func-
tions. They still have formal parameters and bodies, still result in closure values,
and still can be applied, but recursive functions also come with the new feature
that their name (which is fac in the above case) is recursively bound in their
body. We can examine this formally using let expressions.

Expressions let fun f x = e; in e; end

Values The values bound by recursive function declarations are closures just
like those of anonymous functions?.

Typing 1let fun f x = e; in e; end:t
if

e ¢ :ty assuming that f:t; — ¢y and z:ty
e co:t assuming that f:t; — to

This is a lot like how we typed let expressions before, except notice that the
declaration of f causes f to be typed in both the usual scope e, and also the
function body e;.

Reduction These functions reduce the same way as anonymous functions 3.

Special Notes Recursive functions also allow the use of patterns similarly to
anonymous functions, except they require their name to be repeated in each
clause. The exact syntax for this feature is the following:

fun £ py =e1 | ... | £py, =en

This is just syntactic sugar for the declaration:

fun f x = case x of py =>e1 | ... | pp, = e,
3 Fixity

Fizity is the categorization of the order of functions and arguments in our
syntax. It is nice to know, but not necessary for the course.

2However, it is useful to extend our notion of closure to include the function name now.
That way we can write out the application reduction finitely like so:
(env, fn x => e)f v = [env,v/z, (env, fn x => e)¢/f] e
Otherwise our environment would contain a closure containing the same environment contain-
ing the same closure and so on infinitely, since the function recursively refers to itself. This
is fine to reason about, but hard to write down, hence the use of now including the function
name in recursive closures. However, we usually elide environments, so this detail does not
usually matter.

3. .. with the caveat from the previous footnote

~N o O W=

S W N

3.1 Prefix

By default, the fixity of functions that we define in SML is prefix, meaning the
function appears before its arguments. For example, we write the application
of the function square to the argument 5 as square 5, with the function first.

3.2 Postfix

SML has no way of writing postfix functions, which is where the function comes
after the argument. However, it is not uncommon to see in mathematics. The
common notation for the factorial uses the exclamation point as a postfix func-
tion, so that, e.g., 5! means the application of the factorial function to 5.

3.3 Infix

Infix means that the function appears between its arguments. This is commonly
used for functions of 2 arguments, like addition, which we write like 5 + 7.
Indeed, you might have considered SML features like addition to be “primitive”
operations, but they are in fact functions with special syntactic sugar. If you ever
want to refer to the function and not the operation for these special functions,
simply put op before the desired symbol, like op+. Note the type of op+ is int
* int -> int; these infix functions always take a pair as an argument. Also
note that writing op only works for functions whose name does not start with
a letter, like +.

To make an infix function £ in SML, you simply write infix f as a decla-
ration, and elsewhere define f to take a pair as an argument. After declaring
infix f, the function f will be treated as infix.

If you declare f before the declaration infix f, then f should be defined as
usual for a function taking a pair as an argument. Additionally, if the function
name f begins with op followed by some non-letter symbol, then op will be
dropped in later infix use.

fun plus (x, y) = x + 3y
infix plus
val 12 = 5 plus 7

fun op& (x, y) = x andalso y

infix &

val false = true & false

If you declare £ to be infix prior to defining f, then you must either define
f with an infix declaration like fun x f y = e or by using our standard dec-
larations while adding op to the function name. The latter is only available for
function names that can use op, meaning those that do not start with a letter.

infix plus

fun x plus y = x + y
val 12 = 5 plus 7

infix &
fun op& (x, y) = x andalso y
val false = true & false

4 Extensional Equivalence and Reduction Tricks

~

Extensional equivalence (=) and reduction-in-any-number-of-steps (=) are
closely related, but not identical. Here are some tricks to help reason about
them.

~J

[

s an equivalence relation, so it satisfies:

— reflexivity: e = e

symmetry: if e; & e; then es = e

transitivity: if e; & e; and ey = eg then e; X eg
e — is a partial order relation, so it satisfies:

— reflexivity: e => ¢
— antisymmetry: if e; = e5 and e; = €1, then e; = ey
— transitivity: if e; = e5 and e = e3 then e; = e3

~

e =~ ig closed under (side-effect free) reduction, so if e = ¢’ then e = ¢’

e ¢1 = ey does not mean that e; = e or e; = €7 — a counter example is
fn x => x + 1 and fn x => 1 + x, which are extensionally equivalent
but do not reduce to each other

e we can combine the previous properties to learn that if e; =— e and
es = e, i.e., if two expressions reduce to the same expression, then those
two expressions are extensionally equivalent e; = eg

e similarly, if e; = €| and e; => €}, where €] = €}, then e; = ey

e thanks to referential transparency, we can replace extensionally equiv-
alent subexpressions without affecting extensional equivalence, so that
[e1/x] e = [ex/x] e if ey = eq; for example, we know the extensional
equivalence f 3 + (2 * 3)=f 3 + (5 + 1) since 2x3 =5+ 1, and we
do not need to know anything about the function application £ 3 (except
that £:int -> int)

~

e for the values of most types, extensional equivalence (%) coincides with
normal equality (=), but this is not true for the values of types that cannot
be compared with = like functions and reals

e if e < v then e & v, since e < v entails that e = v

e there exist many examples of an expression e:¢ that is not extensionally
equivalent to any values type t — this happens when e is not valuable, i.e.,
when e does not evaluate to a value, and instead does something like loop
forever or throw an exception

